Chemistry (CHEM)

CHEM 1010 PP
Introduction to Chemistry
3:3:0 Fall, Spring, Summer
* Prerequisite(s): MAT 1010 or equivalent
* Corequisite(s): CHEM 1015 (optional)

Assumes no previous knowledge of chemistry. Presents the foundations of chemistry to students who need preparation for further study in chemistry as well as to students who only want to take an introductory course. Covers chemical measurements, atomic structure, formulas, chemical reactions and equations, chemical nomenclature, stoichiometry, molecules and chemical bonding, gas laws, liquids, solids, solutions, acids and bases.

CHEM 1015 Introduction to Chemistry Lab
1:0:2 Spring
* Corequisite(s): CHEM 1010

A lab designed to accompany CHEM 1010. Provides practical experience to support chemistry foundational learning. Emphasizes chemical measurements, atomic structure, formulas, chemical reactions and equations, chemical nomenclature, stoichiometry, molecules and chemical bonding, gas laws, liquids, solids, solutions, acids and bases.

CHEM 1110 PP
Elementary Chemistry for the Health Sciences
4:4:0 Fall, Spring, Summer
* Prerequisite(s): MAT 1010 or equivalent

Introduces the fundamentals of chemistry to students in the health sciences. Covers chemical measurements and calculations, atomic structure, chemical bonding, chemical reactions, states of matter, solutions, chemical equilibrium, acid-base systems, and introduces organic chemistry.

CHEM 1115 Elementary Chemistry Laboratory
1:0:2 Fall, Spring, Summer
* Corequisite(s): CHEM 1010 or CHEM 1110

Introduces inorganic laboratory experiments including density, precipitation, determination of empirical formulas, gas laws and acid-base reactions. Course Lab fee of $20 applies.

CHEM 1120
Elementary Organic Bio-Chemistry
4:4:0 Fall, Spring
* Prerequisite(s): CHEM 1110

An introductory organic and biochemistry class for non-chemistry majors entering nursing and other allied health fields such as medical technology, physical therapy, nutrition, and environmental technology. Studies the nomenclature of organic compounds, organic functional groups and their reactivities, stereochemistry, major biomolecules and their metabolism, enzymes, chemical communications, and chemistry of heredity. May also be used to prepare for organic chemistry (CHEM 2310 and 2320). Students who need or desire laboratory work should enroll in CHEM 1125 also.

CHEM 1125 Elementary Organic Bio-Chemistry Laboratory
1:0:3 Fall, Spring
* Prerequisite(s): CHEM 1110 and CHEM 1115
* Corequisite(s): CHEM 1120

An introductory organic bio-chemistry laboratory class for non-chemistry majors who need a laboratory to accompany Elementary Organic Bio-Chemistry (CHEM 1120). Explores identifications and reactions of organic functional groups and conducts experiments with biomolecules. Course Lab fee of $76 applies.

CHEM 1210 Principles of Chemistry I
4:4:0 Fall, Spring, Summer
* Prerequisite(s): MATH 1050 or equivalent, also it is highly recommended to have prior chemistry experience in high school or in CHEM 1010 at UVU
* Corequisite(s): CHEM 1215

First semester of a full-year course primarily for students in the physical and biological sciences and engineering. Covers fundamentals of chemistry including atoms, molecules, reactions, stoichiometry, chemical bonding, thermochemistry, and gas laws.

CHEM 1215 Principles of Chemistry I Laboratory
1:0:3 Fall, Spring, Summer
* Corequisite(s): CHEM 1210

Primarily for students in the physical and biological sciences and engineering. Introduces laboratory safety and chemical waste disposal practices. Teaches techniques of using standard laboratory equipment. Shows how to record laboratory data and prepare laboratory reports. Experiments follow topics in CHEM 1210. Course Lab fee of $39 applies.

CHEM 1220 Principles of Chemistry II
4:4:0 Fall, Spring, Summer
* Prerequisite(s): CHEM 1210 with a grade of C- or higher
* Corequisite(s): CHEM 1225

Continuation of Chemistry 1210. Primarily for students in the physical and biological sciences and engineering. Covers intermolecular interactions, properties of solutions, kinetics, equilibria, thermodynamics, and electrochemistry.

CHEM 1225 Principles of Chemistry II Laboratory
1:0:3 Fall, Spring, Summer
* Prerequisite(s): CHEM 1215
* Corequisite(s): CHEM 1220

Primarily for students in the physical and biological sciences and engineering. Continuation of CHEM 1215. Experiments follow topics in CHEM 1220. Course Lab fee of $39 applies.

CHEM 2310 Organic Chemistry I
4:4:0 Fall, Spring, Summer
* Prerequisite(s): CCHEM 1210 and CHEM 1220 both with a grade of C- or higher

The first in a series of two organic chemistry classes for students majoring in science and for those interested in careers in medicine, dentistry, veterinary science, and pharmacy, who must complete two semesters of organic chemistry. Teaches bonding and structures of organic molecules. Explores the relationship between structure and reactivity of organic functional groups. Introduces the concepts of nomenclature, stereochemistry, and reaction mechanism.

CHEM 2315 Organic Chemistry I Laboratory
1:0:4 Fall, Spring, Summer
* Prerequisite(s): CHEM 1220, CHEM 1225
* Corequisite(s): CHEM 2310

The first of a series of two laboratory courses to accompany CHEM 2310 and 2320. For students majoring in science and those interested in careers in medicine, dentistry, veterinary science, and pharmacy. Introduces safety in organic chemistry lab and chemical waste disposal. Teaches basic separatory, purification, and analytical techniques in organic chemistry such as crystallization, melting points, distillation and chromatography. Introduces organic synthesis using simple organic reactions. Introduces natural product isolation. Course Lab fee of $142 applies.
CHEM 2320
Organic Chemistry II
4:4:0
Fall, Spring, Summer
* Prerequisite(s): CHEM 2310 with a C- or higher

The second of a series of two organic chemistry classes for students majoring in science and for those interested in careers in medicine, dentistry, veterinary science, and pharmacy, who must complete two semesters of organic chemistry. Introduces spectroscopic techniques used in identification of organic compounds. Teaches carbon-carbon bond formation strategies. Introduces the concept of aromaticity. Teaches free radicals and their effects on environment and life. Surveys biologically important organic molecules such as carbohydrates, proteins, lipids, and nucleic acids.

CHEM 2325
Organic Chemistry II Laboratory
1:0:4
Fall, Spring, Summer
* Prerequisite(s): CHEM 2315
* Corequisite(s): CHEM 2320

The second of a series of two laboratory courses to accompany CHEM 2310 and 2320. For students majoring in science and those interested in careers in medicine, dentistry, veterinary science, and pharmacy. Provides hands-on experience in organic synthesis using a series of single and multistep transformations. Teaches identification of products of reactions using spectroscopic techniques. Explores biologically important organic molecules. Course Lab fee of $169 applies.

CHEM 3000
Analytical Chemistry
2:2:0
Fall
* Prerequisite(s): CHEM 1220, CHEM 1225 and Advanced University Standing
* Corequisite(s): CHEM 3005

For Chemistry majors and others interested in the basic principles of chemical measurement. Studies principles of quantitative analysis, stoichiometry, equilibrium theory, and volumetric analysis. Introduces error analysis and instrumental methods, especially electrochemistry, spectrophotometry, chromatography, and mass spectrometry

CHEM 3005
Analytical Chemistry Laboratory
2:0:6
Fall
* Prerequisite(s): CHEM 1220, CHEM 1225, and University Advanced Standing
* Corequisite(s): CHEM 3000

For Chemistry majors and others interested in the basic principles of chemical measurement. Laboratory companion to CHEM 3000. Involves conducting experiments in quantitative and qualitative analysis, including volumetric and gravimetric analysis. Also, students will conduct experiments in spectrophotometry, electrochemistry, and chromatography. Course Lab fee of $240 applies.

CHEM 3020
Environmental Chemistry
3:3:0
Fall
* Prerequisite(s): CHEM 1225 and University Advanced Standing

Studies the chemistry of soil, ground water, hazardous waste, and the atmosphere. Explores current environmental concerns and issues.

CHEM 3025
Environmental Chemistry Laboratory
1:0:3
On Sufficient Demand
* Prerequisite(s): CHEM 1225 and University Advanced Standing

Laboratory course which supports CHEM 3020, Environmental Chemistry. Introduces laboratory, sampling, and data analyses techniques used in environmental laboratories. Covers air sampling, and soil and water analysis using a variety of instruments and techniques.

CHEM 3060
Physical Chemistry I
4:4:0
Fall
* Prerequisite(s): PHYS 2220, MATH 2210, and University Advanced Standing

Introduces laws of thermodynamics and chemical thermodynamics. Covers changes of state and equilibrium. Introduces quantum mechanics.

CHEM 3070
Physical Chemistry II
4:4:0
Spring
* Prerequisite(s): CHEM 3060 and University Advanced Standing

Continuation of CHEM 3060. Covers quantum mechanics, spectroscopy, kinetics, and statistical thermodynamics.

CHEM 3080
Physical Chemistry III Statistical Mechanics and Chemical Kinetics
3:3:0
On Sufficient Demand
* Prerequisite(s): CHEM 3070 and University Advanced Standing

Teaches the fundamentals of statistical mechanics and chemical kinetics, as well as the fundamentals of the specialized topics of the physical chemistry of chemical symmetry, computational chemistry, NMR spectroscopy, and electrochemistry.

CHEM 3090
Physical Chemistry Applications in Biology
3:3:0
Spring
* Prerequisite(s): MATH 1220, CHEM 2320, and University Advanced Standing

Presents application of thermodynamics, quantum mechanics, and spectroscopy to biology and biological problems. Cannot be used to replace either CHEM 3060 or CHEM 3070 in the chemistry major sequence.

CHEM 3100
Advanced Inorganic Chemistry
4:4:0
Spring
* Prerequisite(s): University Advanced Standing
* Prerequisite(s) or Corequisite(s): CHEM 3000

Reviews major trends across the periodic table. Surveys basic structure, bonding, and oxidation states of the elements. Introduces inorganic stereochemistry including coordination compounds.

CHEM 3115
Physical and Inorganic Chemistry Laboratory
1:0:4
Spring
* Prerequisite(s): CHEM 3000, CHEM 3060, and University Advanced Standing
* Corequisite(s): CHEM 3100, CHEM 3070

Covers both inorganic chemistry and physical chemistry topics. Inorganic chemistry experiments follow lecture topics in CHEM 3100 and physical chemistry experiments follow lecture topics in CHEM 3060 and CHEM 3070. Course Lab fee of $144 applies.

CHEM 3600 (Cross-listed with: BIOL 3600)
Biological Chemistry
3:3:0
Fall, Spring, Summer
* Prerequisite(s): CHEM 2320 and University Advanced Standing

Chemistry

CHEM 3605 (Cross-listed with: BIOL 3605) Biochemistry Laboratory
1:0:4 Fall, Spring
* Prerequisite(s): University Advanced Standing
* Corequisite(s): CHEM 3600
Introduces laboratory techniques in biochemistry. Studies methods and theory behind purification of proteins and nucleic acids including chromatography and electrophoresis. Uses methods in assessing enzyme activity and kinetics and protein structure analysis. Includes analysis and manipulation of DNA and RNA. Course Lab fee of $151 applies.

CHEM 3620 Biological Chemistry II 3:3:0 Spring
* Prerequisite(s): (CHEM 3600 or BIOL 3600) and University Advanced Standing
Continuation of CHEM 3600. Teaches in-depth the biochemistry of molecular and cell biology processes. Explores the topics of molecular information flow and signaling. Examines current understanding in biochemical methods and ideas beyond those discussed in Biochem I.

CHEM 3700 Forensic Analytical Chemistry 3:3:0 On Sufficient Demand
* Prerequisite(s): CHEM 3000, CHEM 2320, and University Advanced Standing
* Corequisite(s): CHEM 4000, CHEM 4005
For students in forensic chemistry emphasis and for chemistry majors interested in forensic science. Studies the challenges, methods, instrumentation, and analyses of forensic science from a fundamental, chemical perspective.

CHEM 3800 (Cross-listed with: ENVT 3800, PHYS 3800) Energy Use on Earth 3:3:0 Fall
* Prerequisite(s): (PHYS 1010 or PHSC 1000 or CHEM 1010 or GEO 1010 or GEO 2040 or METO 1010) and (MATH 1050 or MATH 1055) and University Advanced Standing
Covers the science of energy production and consumption. Quantitatively analyzes various methods of energy production, distribution, and end use in all sectors of our society, including transportation, residential living, and industry. Examines the impacts of our energy consumption on the environment and prospects for alternative energy sources. Intended for science majors interested in energy use in society or in an energy related career, and for students in other majors who feel that a technical understanding of energy use will help them to understand and mitigate its impact in our society.

CHEM 4000 Instrumental Analysis 2:2:0 Spring
* Prerequisite(s): CHEM 3000, CHEM 3070, and University Advanced Standing
* Corequisite(s): CHEM 3115
Covers modern instrumental methods and basic principles of instrumental analysis. Includes spectroscopic and chromatographic analysis.

CHEM 4005 Instrumental Analysis Laboratory 2:0:6 Spring
* Prerequisite(s): CHEM 3000, CHEM 2325, and University Advanced Standing
* Corequisite(s): CHEM 4000
Experiments in selected areas of instrumental methods of analysis. Covers both quantitative and qualitative methods of analysis. Includes introductory laboratory exercises and laboratories using advanced sample preparation and instrumental analysis techniques. Involves the independent creation and implementation of an advanced laboratory exercise. Course Lab fee of $247 applies.

CHEM 4030 Radiochemistry 3:3:0 On Sufficient Demand
* Prerequisite(s): CHEM 1215, MATH 1220, and University Advanced Standing
For students in chemistry, earth sciences, biology, and physics. Introduces nuclear and radiochemistry, stressing the fundamentals of nuclear structure, systematics of nuclear decay, the detection and measurement of radiation, radiation protection, and the role of nuclear chemistry in medical, environmental and scientific applications. Discusses nuclear fuel cycles and nuclear waste problems.

CHEM 4200 (Cross-listed with: BIOL 4200, GEO 4200, PHYS 4200) Teaching Methods in Science 3:2:2 Fall, Spring
Examines objectives, instructional methods and curriculum for teaching science in the secondary school. Includes developing, adapting, evaluating, and using strategies and materials for teaching biological and physical sciences. Explores special needs of the learners and characteristics specific to the science discipline.

CHEM 4800 Pharmacology 3:3:0 Fall, Spring
* Prerequisite(s): (CHEM 3600 or BIOL 3600) and University Advanced Standing
Explores the science behind pharmacological therapeutics. Examines general considerations such as pharmacokinetics, drug metabolism, and toxicology. Surveys focused topics including drugs and drug targets for a wide variety of diseases.

CHEM 482R Chemistry Internship
1 to 4:0:5 to 20 Fall, Spring, Summer
* Prerequisite(s): CHEM 2320, a minimum GPA of 3.0, Departmental approval of the internship proposal, and University Advanced Standing
Provides supervised, practical, and research experience for students preparing for careers in chemistry. May be repeated for a maximum of 12 credit hours as per school standards. May be graded credit/no credit.

CHEM 489R Undergraduate Research in Chemistry 1 to 3:0:3 to 9 Fall, Spring, Summer
* Prerequisite(s): Departmental approval and University Advanced Standing
Conducts research on a project determined by the student jointly with a chemistry faculty and approved by the Chemistry Department Chair. Experimental technique, data collection and analysis, and preparation of research for presentation to an audience of peers will be emphasized. May be repeated for a maximum of 9 credits toward graduation.

CHEM 491R Advanced Topics in Inorganic Chemistry 3:3:0 On Sufficient Demand
Prerequisite(s): CHEM 1220, instructor's permission, and University Advanced Standing; CHEM 3100 or CHEM 3600 or BIOL 3600 recommendedExamines advanced and current topics of inorganic chemistry including bioinorganic chemistry, symmetry and molecular orbital theory, and the descriptive chemistry of main-group compounds. Varies from semester to semester. Offered on demand. May be repeated for a maximum of 9 credits.

CHEM 4920 Chemistry Capstone I 1:1:0 Fall, Spring
* Prerequisite(s): CHEM 2320 with a C- or higher and University Advanced Standing; ENGL 2010 or ENGL 2020 highly recommended
Begins a three semester capstone series that engages students in current chemistry topics, enables students to become familiar with chemistry literature resources, teaches chemistry research and design, and prepares students for further education and employment in chemistry-related fields. Requires students to present their findings in the form of a written senior thesis. Focuses on current topics in chemistry and on chemistry literature. Includes significant writing opportunities. Requires students to choose a capstone project with the help of a faculty mentor and to work with that mentor for the remainder of the capstone project.
CHEM 4930
Chemistry Capstone II
1:0:4
Fall, Spring
* Prerequisite(s): CHEM 4920 with a C- or higher and University Advanced Standing
* Corequisite(s): 3 credits of CHEM 489R strongly encouraged

Continues a three semester capstone series that engages students in current chemistry topics, enables students to become familiar with chemistry literature resources, teaches chemistry research and design, and prepares students for further education and employment in chemistry-related fields. Requires students to present their findings in the form of a written senior thesis. Focuses on current topics in chemistry and on chemistry literature. Chemistry capstone II specifically requires students to work with a faculty mentor to complete laboratory primary research that will be used to write up a senior thesis that will be completed in CHEM 4940.

CHEM 4940
Chemistry Capstone III
1:0:4
Fall, Spring
* Prerequisite(s): CHEM 4930 with a C- or higher and University Advanced Standing

Completes a three semester capstone series that engages students in current chemistry topics, enables students to become familiar with chemistry literature resources, teaches chemistry research and design, and prepares students for further education and employment in chemistry-related fields. Requires students to present their findings in the form of a written senior thesis. Focuses on current topics in chemistry and on chemistry literature. Requires students to work with a faculty mentor to complete their undergraduate research project and write a senior thesis.

CHEM 495R
Advanced Topics in Organic Chemistry
3:3:0
On Sufficient Demand
* Prerequisite(s): CHEM 2310, CHEM 2320, Instructor approval, and University Advanced Standing

For students majoring in Chemistry. Varies from semester to semester. May be repeated for a maximum of 9 credits. Topics include organic synthesis, reaction mechanisms, and identification of organic compounds.

CHEM 496R
Special Topics in Chemistry
1 to 4:1 to 4:0 to 9
On Sufficient Demand
* Prerequisite(s): CHEM 2320, Junior or Senior standing, instructor approval, and University Advanced Standing

Explores special topics in chemistry. Topics vary depending on student demand and current topics of significance in chemistry. May be repeated for a maximum of 8 credits toward graduation.

CHEM 499R
Independent Study and Research
1 to 4:0 to 12
Fall, Spring, Summer
* Prerequisite(s): Instructor approval and University Advanced Standing

Uses independent study on selected topics and conducting experiments in the same topic. Provides guidance by a faculty member. May be taken for a maximum of 4 credits.

CHEM 525R
Advanced Topics for Chemistry Teachers
1 to 5:1 to 5:0 to 10
Summer
* Prerequisite(s): Departmental Approval

For licensed teachers or teachers seeking to recertify their chemistry endorsement from the Utah State Office of Education. Teaches principles of chemistry and pedagogy of teaching chemistry for teachers in public or private schools. Emphasizes correlation with the Utah Core Curriculum, the National Science Education Standards, and the Benchmarks of Project 2061. Topics will vary.