Chemistry (CHEM)

CHEM 1010 Introduction to Chemistry
3:3:0 Fall, Spring, Summer
* Prerequisite(s): MAT 1000 or MAT 1010 or equivalent
* Corequisite(s): CHEM 1015 (optional)

Assumes no previous knowledge of chemistry. Presents the foundations of chemistry to students who need preparation for further study in chemistry as well as to students who only want to take an introductory course. Covers chemical measurements, atomic structure, formulas, chemical reactions and equations, chemical nomenclature, stoichiometry, molecules and chemical bonding, gas laws, liquids, solids, solutions, acids and bases.

CHEM 1105 Introduction to Chemistry Lab
1:0:2 Spring
* Corequisite(s): CHEM 1010

A lab designed to accompany CHEM 1010. Provides practical experience to support chemistry foundational learning. Emphasizes chemical measurements, atomic structure, formulas, chemical reactions and equations, chemical nomenclature, stoichiometry, molecules and chemical bonding, gas laws, liquids, solids, solutions, acids and bases.

CHEM 1110 Elementary Chemistry for the Health Sciences
4:4:0 Fall, Spring, Summer
* Prerequisite(s): MAT 1000 or MAT 1010 or MAT 1030 or MAT 1035 or MATH 1050 or MATH 1055

Introduces the fundamentals of chemistry to students in the health sciences. Covers chemical measurements and calculations, atomic structure, chemical bonding, chemical reactions, states of matter, solutions, chemical equilibrium, acid-base systems, and introduces organic chemistry.

CHEM 1115 Elementary Chemistry Laboratory
1:0:2 Fall, Spring, Summer
* Prerequisite(s): MAT 1000 or MAT 1010 or MAT 1030 or MAT 1035 or MATH 1050 or MATH 1055
* Corequisite(s): CHEM 1010 or CHEM 1110

Introduces inorganic laboratory experiments including density, precipitation, determination of empirical formulas, gas laws and acid-base reactions. Course Lab fee of $20 applies.

CHEM 1120 Elementary Organic Bio-Chemistry
4:4:0 Spring
* Prerequisite(s): CHEM 1110

Introduces organic and biochemical content for non-chemistry majors entering nursing and other allied health fields such as medical technology, physical therapy, nutrition, and environmental technology. Studies the nomenclature of organic compounds, organic functional groups and their reactivities, stereochemistry, and nuclear magnetic resonance. May also be used to prepare for organic chemistry (CHEM 2310 and 2320).

CHEM 1125 Elementary Organic Bio-Chemistry Laboratory
1:0:3 Spring
* Prerequisite(s): CHEM 1110 and CHEM 1115
* Corequisite(s): CHEM 1120

An introductory organic bio-chemistry laboratory class for non-chemistry majors who need a laboratory to accompany Elementary Organic Bio-Chemistry (CHEM 1120). Explores identifications and reactions of organic functional groups and conducts experiments with biomolecules. Course Lab fee of $76 applies.

CHEM 1210 Principles of Chemistry I
4:4:0 Fall, Spring, Summer
* Prerequisite(s): MATH 1050 or equivalent, also it is highly recommended to have prior chemistry experience in high school or in CHEM 1010 at UVU
* Corequisite(s): CHEM 1215

First semester of a full-year course primarily for students in the physical and biological sciences and engineering. Covers fundamentals of chemistry including atoms, molecules, reactions, stoichiometry, chemical bonding, thermochemistry, and gas laws.

CHEM 1215 Principles of Chemistry I Laboratory
1:0:3 Fall, Spring, Summer
* Corequisite(s): CHEM 1210

Primarily for students in the physical and biological sciences and engineering. Introduces laboratory safety and chemical waste disposal practices. Teaches techniques of using standard laboratory equipment. Shows how to record laboratory data and prepare laboratory reports. Experiments follow topics in CHEM 1210. Course Lab fee of $39 applies.

CHEM 1220 Principles of Chemistry II
4:4:0 Fall, Spring, Summer
* Prerequisite(s): CHEM 1210 with a grade of C- or higher
* Corequisite(s): CHEM 1225

Continuation of Chemistry 1210. Primarily for students in the physical and biological sciences and engineering. Covers intermolecular interactions, properties of solutions, kinetics, equilibria, thermodynamics, and electrochemistry.

CHEM 1225 Principles of Chemistry II Laboratory
1:0:3 Fall, Spring, Summer
* Prerequisite(s): CHEM 1215
* Corequisite(s): CHEM 1220

Is designed for the physical and biological sciences and engineering. Teaches intermolecular interactions, properties of solutions, kinetics, equilibria, thermodynamics, and electrochemistry. Follows CHEM 1215 and emphasizes topics from CHEM 1220.

CHEM 2310 Organic Chemistry I
4:4:0 Fall, Spring, Summer
* Prerequisite(s): CHEM 1220 with a grade of C- or higher
* Corequisite(s): CHEM 2315

The first in a series of two organic chemistry classes for students majoring in science and for those interested in careers in medicine, dentistry, veterinary science, and pharmacy, who must complete two semesters of organic chemistry. Teaches bonding and structures of organic molecules. Explores the relationship between structure and reactivity of organic functional groups. Introduces the concepts of nomenclature, stereochemistry, and reaction mechanism.

CHEM 2315 Organic Chemistry I Laboratory
1:0:4 Fall, Spring, Summer
* Prerequisite(s): CHEM 1220, CHEM 1225
* Corequisite(s): CHEM 2310

The first of a series of two laboratory courses to accompany CHEM 2310 and 2320. For students majoring in science and those interested in careers in medicine, dentistry, veterinary science, and pharmacy. Introduces safety in organic chemistry lab and chemical waste disposal. Teaches basic separatory, purification, and analytical techniques in organic chemistry such as crystallization, melting points, distillation and chromatography. Introduces organic synthesis using simple organic reactions. Introduces natural product isolation. Course Lab fee of $142 applies.
The second of a series of two organic chemistry classes for students majoring in science and those interested in careers in medicine, dentistry, veterinary science, and pharmacy. The second of a series of two laboratory courses to accompany CHEM 2310 and 2320. This course covers the principles and concepts of chemical measurement, laboratory companion to CHEM 3000.

Explores biologically important organic molecules such as carbohydrates, proteins, lipids, and nucleic acids. The laboratory course which supports CHEM 3020. Environmental Chemistry and Laboratory course.

Introduces principles of chemical measurement, laboratory companion to CHEM 3000. Explores biologically important organic molecules. Course Lab fee of $169 applies.

Analytical chemistry laboratories. Explores principles and concepts introduced in CHEM 3060. Teaches design and execution of physical chemistry experiments and interpretation of the observations. Uses application of physical chemistry to solving physical chemistry problems.

Features advanced discussions of quantum mechanics, including solutions to the Schrodinger wave equation. Connects quantum mechanics with observable quantities using techniques such as spectroscopy.

Teaches the laws of thermodynamics and chemical thermodynamics with application to chemical reactions and chemical equilibrium. Covers changes of state, including the use of phase diagrams. Discusses real gases and real solutions. Introduces electrochemistry and chemical kinetics.

Explores biologically important organic molecules. Course Lab fee of $169 applies.

Teaches the fundamentals of chemical measurement, laboratory companion to CHEM 3000. Explores current environmental concerns and issues.

* Prerequisite(s): CHEM 1220, CHEM 1225, and University Advanced Standing

Explores principles and concepts introduced in CHEM 3060. Teaches design and execution of physical chemistry experiments and interpretation of the observations. Uses application of physical chemistry to solving physical chemistry problems.

Explores principles and concepts introduced in CHEM 3060. Teaches design and execution of physical chemistry experiments and interpretation of the observations. Uses application of physical chemistry to solving physical chemistry problems.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

Grade of "C" or higher

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.

For Chemistry majors and others interested in the basic principles of chemical measurement. Explores current environmental concerns and issues.
CHEM 3605 (Cross-listed with: BIOL 3605) Biochemistry Laboratory 1:0:4 Fall, Spring
* Prerequisite(s): University Advanced Standing
* Corequisite(s): CHEM 3600
Introduces laboratory techniques in biochemistry. Studies methods and theory behind purification of proteins and nucleic acids including chromatography and electrophoresis. Uses methods in assessing enzyme activity and kinetics and protein structure analysis. Includes analysis and manipulation of DNA and RNA. Course Lab fee of $151 applies.

CHEM 3620 Biological Chemistry II 3:3:0 Spring
* Prerequisite(s): (CHEM 3600 or BIOL 3600) and University Advanced Standing
Continuation of CHEM 3600. Teaches in-depth the biochemistry of molecular and cell biology processes. Explores the topics of molecular information flow and signaling. Examines current understanding in biochemical methods and ideas beyond those discussed in Biochem I.

CHEM 3700 Forensic Analytical Chemistry 3:3:0 On Sufficient Demand
* Prerequisite(s): CHEM 3000, CHEM 2320, and University Advanced Standing
* Corequisite(s): CHEM 4000, CHEM 4005
For students in forensic chemistry emphasis and for chemistry majors interested in forensic science. Studies the challenges, methods, instrumentation, and analyses of forensic science from a fundamental, chemical perspective.

CHEM 3800 (Cross-listed with: ENVT 3800, PHYS 3800) Energy Use on Earth 3:3:0 Fall
* Prerequisite(s): (PHYS 1010 or PHSC 1000 or CHEM 1010 or GEO 1010 or GEO 2040 or METO 1010) and (MATH 1050 or MATH 1055) and University Advanced Standing
Covers the science of energy production and consumption. Quantitatively analyzes various methods of energy production, distribution, and end use in all sectors of our society, including transportation, residential living, and industry. Examines the impacts of our energy consumption on the environment and prospects for alternative energy sources. Intended for science majors interested in energy use in society or in an energy related career, and for students in other majors who feel that a technical understanding of energy use will help them to understand and mitigate its impact in our society.

CHEM 4000 Instrumental Analysis 2:2:0 Spring
* Prerequisite(s): CHEM 3000, and University Advanced Standing
* Corequisite(s): CHEM 4005
Covers modern instrumental methods and basic principles of instrumentation. Includes spectroscopic and chromatographic analysis.

CHEM 4005 Instrumental Analysis Laboratory 2:0:6 Spring
* Prerequisite(s): CHEM 3000, CHEM 2325, and University Advanced Standing
* Corequisite(s): CHEM 4000
Experiments in selected areas of instrumental methods of analysis. Covers both quantitative and qualitative methods of analysis. Includes introductory laboratory exercises and laboratories using advanced sample preparation and instrumental analysis techniques. Involves the independent creation and implementation of an advanced laboratory exercise. Course Lab fee of $247 applies.

CHEM 4030 Radiochemistry 3:3:0 Fall Even Years
* Prerequisite(s): CHEM 1220, MATH 1210, and University Advanced Standing
Introduces nuclear and radiochemistry, stressing the fundamentals of nuclear structure, systematics of nuclear decay, the detection and measurement of radiation, radiation protection, and the role of nuclear chemistry in medical, environmental and scientific applications. Discusses nuclear fuel cycles and nuclear waste problems.

CHEM 4200 (Cross-listed with: BIOL 4200, GEO 4200, PHYS 4200) Teaching Methods in Science 3:2:2 Fall, Spring
* Prerequisite(s): CHEM 1220, University Advanced Standing
Examines objectives, instructional methods and curriculum for teaching science in the secondary school. Includes developing, adapting, evaluating, and using strategies and materials for teaching biological and physical sciences. Explores special needs of the learners and characteristics specific to the science discipline.

CHEM 4600 Structure Determination 2:2:0 Fall
* Prerequisite(s): CHEM 3600, and University Advanced Standing
* Corequisite(s): CHEM 4605
Explores integrated topics in organic, inorganic, physical, solid-state, and biochemistry using advanced theory. Enables hands-on use and manipulation of state-of-the-art instrumentation. Examines primary chemistry literature, and involves substantial problem solving using spectroscopic and spectrometric data.
CHEM 4920
Chemistry Capstone I
1:1:0
* Prerequisite(s): CHEM 2320 with a C- or higher and University Advanced Standing; ENGL 2010 or ENGL 2020 highly recommended

Begins a four semester capstone series that engages students in current chemistry topics, enables students to become familiar with chemistry literature resources, teaches chemistry research and design, and prepares students for further education and employment in chemistry-related fields. Requires students to present their findings in the form of a written senior thesis. Focuses on current topics in chemistry and on chemistry literature. Includes significant writing opportunities. Requires students to choose a capstone project with the help of a faculty mentor and to work with that mentor for the remainder of the capstone project.

CHEM 4930
Chemistry Capstone II
1:1:0
* Prerequisite(s): CHEM 4920 with a C- or higher and University Advanced Standing
* Corequisite(s): CHEM 489R

Continues a four semester capstone series. Teaches chemistry research and design for further education and employment in chemistry-related fields. Focuses on current topics in chemistry, chemistry literature and formal report writing based on American Chemical Society guidelines. Requires work with a faculty mentor to complete laboratory primary research that will be used to write a senior thesis that will be completed in CHEM 4950.

CHEM 4940
Chemistry Capstone III
1:1:0
* Prerequisite(s): CHEM 4930 with a C- or higher and University Advanced Standing
* Corequisite(s): CHEM 489R

Continues a four semester capstone series. Teaches chemistry research and design for further education and employment in chemistry-related fields. Focuses on current topics in chemistry, chemistry literature and formal report writing based on American Chemical Society guidelines. Requires work with a faculty mentor to complete laboratory primary research that will be used to write a senior thesis that will be completed in CHEM 4950.

CHEM 4950
Chemistry Capstone IV
1:1:0
* Prerequisite(s): CHEM 4940 with a C- or higher and University Advanced Standing
* Corequisite(s): CHEM 489R

Completes a four semester capstone series that engages students in current chemistry topics, enables students to become familiar with chemistry literature resources, teaches chemistry research and design, and prepares students for further education and employment in chemistry-related fields.

CHEM 495R
Advanced Topics in Organic Chemistry
3:3:0
* Prerequisite(s): CHEM 2310, CHEM 2320, Instructor approval, and University Advanced Standing

For students majoring in Chemistry. Varies from semester to semester. May be repeated for a maximum of 9 credits. Topics include organic synthesis, reaction mechanisms, and identification of organic compounds.

CHEM 496R
Special Topics in Chemistry
1 to 4:1 to 4:0 to 9
On Sufficient Demand
* Prerequisite(s): CHEM 2320, Junior or Senior standing, instructor approval, and University Advanced Standing

Explores special topics in chemistry. Topics vary depending on student demand and current topics of significance in chemistry. May be repeated for a maximum of 8 credits toward graduation.

CHEM 499R
Independent Study and Research
1 to 4:0:3 to 12
Fall, Spring, Summer
* Prerequisite(s): Instructor approval and University Advanced Standing

Uses independent study on selected topics and conducting experiments in the same topic. Provides guidance by a faculty member. May be taken for a maximum of 4 credits.

CHEM 525R
Advanced Topics for Chemistry Teachers
1 to 5:1 to 5:0 to 10
Summer
* Prerequisite(s): Departmental Approval

For licensed teachers or teachers seeking to recertify their chemistry endorsement from the Utah State Office of Education. Teaches principles of chemistry and pedagogy of teaching chemistry for teachers in public or private schools. Emphasizes correlation with the Utah Core Curriculum, the National Science Education Standards, and the Benchmarks of Project 2061. Topics will vary.