ECE 1020
Computer Engineering Problem Solving with MATLAB and LabVIEW
1:1:0 Fall, Spring
* Prerequisite(s): MATH 1050 or higher
Introduces the field of Computer Engineering through programming in the MATLAB and LabVIEW languages. Teaches the design of various components of a prototype communication system while learning about the following aspects of MATLAB: scripts and function files, math functions, commands for array construction and manipulation, string expressions, logic operators, control flow, and graphics. No prior knowledge of computer engineering is assumed. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 2210
Fundamentals of Electric Circuit Analysis
3:3:0 Spring
* Prerequisite(s): MATH 1210, PHYS 2210
* Corequisite(s): ECE 2215
Studies fundamental electric circuit analysis techniques. Develops analysis techniques using Kirchoff's laws, Thévenin and Norton equivalents, superposition, and phasors. Covers transient and steady-state time-domain analysis, and frequency analysis. Lab access fee of $35 for computers applies.

ECE 2215
Fundamentals of Electric Circuit Analysis
1:0:3 Spring
* Prerequisite(s): MATH 1210, PHYS 2210
* Corequisite(s): ECE 2210
Covers fundamental electric circuit analysis techniques. Develops analysis techniques using Kirchoff's laws, Thévenin and Norton equivalents, superposition, and phasors. Covers transient and steady-state time-domain analysis, and frequency analysis. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 2250
Circuit Theory
3:3:0 Fall, Spring
* Prerequisite(s): MATH 1210, PHYS 2210, ECE 1020
* Corequisite(s): ECE 2255
Develops linear circuit theory and its application in the analysis and design of RLC active circuits. Covers DC, AC, and transient analysis utilizing node and mesh analysis. Introduces the use of CAD tools. Integrates a laboratory. Lab access fee of $35 for computers applies.

ECE 2255
Circuit Theory Lab
1:0:2 Fall, Spring
* Prerequisite(s): MATH 1210, PHYS 2210
* Corequisite(s): ECE 2250
Laboratory for EENG 2250 develops linear circuit theory and its application in the analysis and design of RLC active circuits. Covers DC, AC, and transient analysis utilizing node and mesh analysis. Introduces the use of CAD tools. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 2700
Digital Design I
3:3:0 Fall
* Prerequisite(s): MATH 1050 or MATH 1055
* Corequisite(s): ECE 2705
Studies the design and application of combinational and sequential logic circuits with discrete and programmable logic devices. Lab access fee of $35 for computers applies.

ECE 2705
Digital Design I Lab
1:0:2 Fall
* Prerequisite(s): MATH 1050 or MATH 1055
* Corequisite(s): ECE 2700
Designed to accompany ECE 2700. Covers design of digital systems with discrete and programmable logic devices. Includes the use of CAD tools for system design and verification. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 2760
Introduction to Semiconductor Theory and Nanotechnology
3:3:0 Spring
* Prerequisite(s): MATH 1060 or higher (MATH 1090 not included)
Introduces the theory of semiconductor materials and devices. Provides an understanding of Nano/microfabrication technology and the physics of semiconductor devices. Covers design principles for the fabrication of newly developed devices and applications.

ECE 3250
Power Systems Engineering
3:3:0 Spring
* Prerequisite(s): ECE 2250, University Advanced Standing, and (Formal Acceptance into the Electrical Engineering Program, or Departmental Approval)
Introduces power system analysis and design with the aid of a personal computer. Emphasizes AC power generation, distribution and usage. Covers single-phase and 3-phase power, motors, generators, power distribution and the grid, generation plants, smart grids, and power flow control.

ECE 3350
Microelectronics
3:3:0 Spring
* Prerequisite(s): ECE 2250, University Advanced Standing, and (Formal Acceptance into the Electrical Engineering Program, or Departmental Approval)
Introduces the theory and practice of control systems engineering. Covers modeling in the frequency and time domains, analog and discrete transfer function models, reduction of multiple subsystems, system response specifications, control system characteristics, root locus analysis and design, frequency response analysis and design. Emphasizes computer-aided analysis.

ECE 3450
Electromagnetics and Transmission Lines
3:3:0 Spring
* Prerequisite(s): PHYS 2220, ECE 2250, University Advanced Standing, and (Formal Acceptance into the Electrical Engineering Program, or Departmental Approval)
Introduces the fundamentals of electromagnetic field theory and application: vector analysis, electric and magnetic fields, potential theory, dielectric and magnetic material properties, conductance, capacitance, and inductance, Maxwell's equations and circuit concepts. Explains transmission lines as a bridge to understanding electromagnetic field theory. Covers basic principles of radiation and propagation in waveguides and antennas.

ECE 3710
Applied Probability and Statistics for Engineers and Scientists
3:3:0 Fall, Spring, Summer
* Prerequisite(s): MATH 1210 and University Advanced Standing
Studies probability and statistical theory with an emphasis on engineering and computer science applications. Covers descriptive statistics, discrete and continuous random variables, probability distributions, hypothesis testing, expectation, estimation, ANOVA testing, and regression analysis. Includes computer analysis of data and simulation. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 3730
Embedded Systems I
3:3:0 Fall
* Prerequisite(s): ECE 2700 and University Advanced Standing
Presents an introduction to the basic building-blocks and the underlying scientific principles of embedded systems. Covers both the hardware and software aspects of embedded processor architectures and assembly language programming. Develops the theory and technology necessary for the interconnection of devices and systems to microcontrollers by using hardware and software examples and students' projects.<cr>Software fee of $10 applies. Lab access fee of $35 for computers applies.
ECE 3740
Digital Design II
3:3:0 Spring
* Prerequisite(s): ECE 2700 and University Advanced Standing
Covers the design and verification of digital systems. Emphasizes hierarchical design principles and the use of programmable logic devices (PLDs). Utilizes modern CAD tools and design languages (VERILOG). Lab access fee of $35 for computers applies.

ECE 3750
Engineering Analysis
3:3:0 Fall
* Prerequisite(s): MATH 1220, ECE 1020, and University Advanced Standing
Studies Linear systems, abstract vector spaces, matrices through eigenvalues and eigenvectors, solution of ordinary differential equations, Laplace transforms, first order systems, and complex numbers. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 3760
Electronic Systems
3:3:0 Spring
* Prerequisite(s): ECE 2250, PHYS 2220, and University Advanced Standing
* Corequisite(s): ECE 3765
Introduces semiconductor theory and the fundamentals of diode and transistor operation. Covers the use of discrete and integrated active devices in linear amplifier and switching applications. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 3765
Electronic Systems Lab
1:0:2 Spring
* Prerequisite(s): ECE 2255, PHYS 2220, and University Advanced Standing
* Corequisite(s): ECE 3760
Designed to accompany ECE 3760. Covers electronic analog circuit design, simulation, construction, debugging and measurement of circuit performance quantities using advanced instrumentation techniques. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 3770
Signals and Systems
3:3:0 Spring
* Prerequisite(s): ECE 3750 and University Advanced Standing
Studies the time and frequency domain analysis of continuous time systems subjected to periodic and nonperiodic input signals. Introduces signal and transform theory and the application of Laplace and Fourier transforms. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 3780
Communication Systems and Circuits
3:3:0 Spring
* Prerequisite(s): ECE 3770, University Advanced Standing, and (Formal Acceptance into the Electrical Engineering Program, or Departmental Approval)
Introduces the fundamentals of electronic communication systems and circuits. Covers pulse code modulation, line coding, information rate, equalization, amplitude modulation, angle modulation, and noise in communication systems.

ECE 4730
Embedded Systems II
3:3:0 Spring
* Prerequisite(s): ECE 3730 and University Advanced Standing
Introduces a range of topics in the field of artificial neural networks: modeling of brains, applicable algorithms, and related applications. Develops the theory of a number of neural network models such as Perceptron, Multilayer Perceptron, and Hopfield networks. Emphasizes algorithms for implementing simple artificial neural networks and their applications. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 4740
Queuing Theory
3:3:0 On Sufficient Demand
* Prerequisite(s): STAT 2040, ECE 3750, and University Advanced Standing
Includes computer systems network modeling using stochastic processes: queueing theory models, performance analysis, resource allocations, large-system response parameters. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 4750
Digital Signal Processing
3:3:0 Fall
* Prerequisite(s): ECE 3770, ECE 3710, and University Advanced Standing
Introduces the theory of digital signal processing and its application to practical problems. Covers z-transforms, discrete-time Fourier transforms, FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) digital filter design. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 4760
VLSI Design
3:3:0 Fall
* Prerequisite(s): ECE 3760 and University Advanced Standing
* Corequisite(s): ECE 4765
Focuses on theories and techniques of VLSI design on CMOS technology. Studies the fundamental concepts and structures of designing digital VLSI systems, including CMOS devices and circuits, standard CMOS fabrication processes, CMOS design rules, static and dynamic logic structures, interconnect analysis, CMOS chip layout, simulation and testing, low power techniques, design tools and methodologies, VLSI architecture. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 4765
VLSI Design Laboratory
1:0:2 Fall
* Prerequisite(s): ECE 3765 and University Advanced Standing
* Corequisite(s): ECE 4760
Designed to accompany ECE 4760. Teaches students the complete process of building a ready-to-fabricate CMOS integrated circuit using a commercial design software. Lab experiments include the layout design of CMOS transistors, gate level design, design using VHDL, CHIP design and pin configuration, and simulation of the circuit for slack time and power consumption. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 4770
Artificial Neural Networks
3:3:0 Fall
* Prerequisite(s): MATH 1210 and University Advanced Standing
Introduces a range of topics in the field of artificial neural networks: modeling of brains, applicable algorithms, and related applications. Develops the theory of a number of neural network models such as Perceptron, Multilayer Perceptron, and Hopfield networks. Emphasizes algorithms for implementing simple artificial neural networks and their applications. Software fee of $10 applies. Lab access fee of $35 for computers applies.

ECE 4780
Wireless and Mobile Communications
3:3:0 Spring
* Prerequisite(s): MATH 1210, ECE 2250, and University Advanced Standing
Covers the fundamentals of analog and digital wireless communications. Includes baseband and bandpass, analog and digital signaling techniques along with appropriate mathematical background in Fourier transforms, probability and random variables. Introduces both software and hardware designs.

ECE 4800
Computer Engineering Senior Design Project
3:3:0 Fall, Spring
* Prerequisite(s): ECE 3740 and University Advanced Standing
Serves as a project-oriented capstone course for computer engineering majors. Emphasizes major hardware and software design. Includes identification and completion of a suitable design project to be mutually selected by the faculty supervisor and student. Requires weekly written and oral presentations as well as a final written project report and an oral presentation. Requires completion of a program level assessment test. Software fee of $10 applies. Course fee of $27 for materials/testing applies. Lab access fee of $35 for computers applies.
ECE 4900
Electrical Engineering Capstone I
3:3:0 Fall
* Prerequisite(s): ECE 3350 and University Advanced Standing
Focuses on team-oriented design projects. Incorporates engineering standards and realistic constraints including economic, environmental, sustainability, manufacturability, ethical, health and safety, social, and political. Emulates the problems encountered by engineers working in commercial, industrial, and governmental entities. Capstone I and II must be taken in consecutive semesters.

ECE 490R
Advanced Current Topics in Computer Engineering
1 to 3:1 to 3:0 On Sufficient Demand
* Prerequisite(s): Department Approval and University Advanced Standing
Provides exposure to emerging technologies and topics of current interest in computer engineering. Varies each semester depending upon the state of technology. May be repeated for a maximum of 6 credits toward graduation without prior written department approval.

ECE 491R
Independent Study
1 to 3:0 to 3:0 to 9
* Prerequisite(s): Prior written Department Chair approval and University Advanced Standing.
Offers independent study as directed by a faculty advisor in reading, individual projects, etc. Varies each semester depending upon the state of technology. A maximum of 3 credit hours may be counted towards graduation without prior written Department approval.

ECE 4950
Electrical Engineering Capstone II
3:3:0 Spring
* Prerequisite(s): ECE 4900 and University Advanced Standing
Serves as a second semester of the two-semester design experience from conception to modeling or prototype. Focuses on team-oriented design projects. Incorporates engineering standards and realistic constraints including economic, environmental, sustainability, manufacturability, ethical, health and safety, social, and political. Emulates the problems encountered by engineers working in commercial, industrial, and governmental entities. Capstone I and II must be taken in consecutive semesters.