

Scope of Project

- Build and prepare a functional wind turbine prototype based on 2022-2023 CWC (Collegiate Wind Competition) rules and standards.
- Reach needed milestones for next year's team to compete.
- Invite and recruit a structured UVU Windmill Team to compete every year following the 2023-24 competition.

Design Requirements of the CWC

- Wind tunnel speeds of 5 22 m/s
- Blades and Turbine components must be within 45 cm x 45 cm x 45 cm cube
- Turbine must anchor into 15 cm x 25 cm x 25cm sand cube submerged below 10cm of water
- Power generation must not exceed 48 volts
- Must be able to control braking of turbine

Objectives

- Redesign of housing to allow for a more compact and enclosed design
- Reduction of weighted components to allow for functionality and efficiency
- Incorporating last Years Moons 80BLC D/C motor into new design
- Build foundation to withstand wind speeds of 22 m/s with displacement less than 25mm
- Design a blade that can withstand 22 m/s
- Optimize the blade to fit in the 45 cm cube
- Design modular controller to change to each need
- Integrate braking systems that are required for competition

ww.PosterPresentations.com

Wind Turbine Prototype for Offshore Power Generation Blake Brandt, Isaac Manning, David Paxman, Chander Adams, Jon Ruggles Dr. Abdennour Seibi

Methods and Materials

Turbine Housing

- Geared configuration
- Sectioned Structal supports for drive train and power generator
- Non-Ferrous internal components

Original Vs Custom shaft

Drive Shaft and Secondary brake

- Two drive shafts were machined of 304 stainless steel by A&M machining
- Centered Machined shafts for true alignment
- Sliding disk design for even pressure distribution during braking
- Two 6-volt actuators for braking during low power generation.

<u>Spur Gear Development</u>

- Gear ratio ranges 1:1.25 to 1:89
- Weight reduction for increased efficiency
- Printed using Vat Photopolymerization

Engineering Lab for using their wind tunnel and other resources.