State Junior Mathematics Contest Spring 2007

- 1. How many whole number divisors does the number 2007 have?

- (a) 101 (b) 135 (c) 137 (d) 1131 (e) 1211

$$66_8 = 6(8) + 6(1) = 48 + 6 = 54$$

$$132_4 = 1(16) + 3(4) + 2(1) = 30$$

$$1011_2 = 1(8) + 0(4) + 1(2) + 1(1) = 11$$

$$95 = 1(64) + 3(8) + 7(1) = 137_8$$

- 3. The decimal $0.\overline{9} = 0.999...$ is equal to

 - (a) $1 (b) 1 (\frac{9}{10})^{10} (c) (\frac{9}{10})^{\frac{10}{9}} (d) 999/1000 (e) 9/10$

let
$$n = 0.\overline{q}$$
 \Rightarrow $10n = 9.\overline{q}$
 $\Rightarrow 10n = 9.\overline{q}$
 $-n = 0.\overline{q}$
 $q_n = 9$
 $n = 1$

- 4. How many whole numbers between 99 and 999 are divisible by 4, 6 and 9?
- (a) 13 (b) 24 (c) 25 (d) 27

LCM of 4,6,9 = 36 $\frac{27}{36\sqrt{999}}$ $\frac{36\sqrt{999}}{27}$ $\frac{72}{279}$ $\frac{27}{36472}$ $\frac{36\sqrt{999}}{27}$ $\frac{36\sqrt{72}}{36472}$ $\frac{36\sqrt{72}}{27}$ $\frac{36\sqrt{72}}$

- 5. If M/5 has a remainder of 2 and N/5 has a remainder of 4, then (M+N)/5 will have a remainder of what?
 - (a) 0 (b) 1 (c) 2 (d) 3 (e) 5

$$\frac{M+N}{5} = \frac{M}{5} + \frac{N}{5}$$

$$R^2 + R4 \Rightarrow \text{There is a remaindur}$$
of $6 \Rightarrow 5 R1$

- 6. How many children are there in a family in which each boy has as many sisters as brothers but each girl has twice as many brothers as sisters?
 - (a) 4 (b) 5 (c) 6 (d) 7 (e) 8

7.	Five players are on the Academic Team	. Their	names	do	not	indicate	their
	gender.						

- Three are girls and two are boys.
- Two wear white shirts and three wear black shirts.
- · MIKEN and CARRY wear different color shirts. =) one is white, one is Black
- BARI and JAMIE wear the same color shirt. => must be Black
- =) must be Girls • PITA and CARRY are the same gender.
- JAMIE and MIKEN are different genders. =) one is Girl, one is Boy
- The boy with the white shirt scored the most points.

Who is the leading scorer?

(e) PITA (c) JAMIE MIKEN(b) CARRY (a) BARI Black white Miken X Bari

because black short @ Jamie "
Carry " boy of white short.

8. Find the area of the shaded region. The petals are formed by semicircles and the square is 8 cm on a side.

we want A=4A,

(a) $32(\pi-2)$ (b) $8(\pi-1)$ (c) $16(\pi-1)$ (d) $64-32\pi$ (e) $16(\pi-2)$

9. The radii of the circles on this target are 1, 2, 3, and 4 inches. What is the probability that a random shot that hits the target will hit the bull's eye (i.e., the inner circle)?

(a) 1/4 (b) 1/8 (c) 1/16 (d) $1/4\pi$ (e) $1/2\pi$

$$P(bull's eye) = \frac{T(1^2)}{T(4^2)} = \frac{T}{16T} = \frac{1}{16}$$

10. How many triangles are in this drawing?

- (a) 10
- (b) 20
- (c) 25
- (d) 30

- 11. Solve for *x*. $|3x-2| \le 17$

 - (a) no solution (b) $x \ge \frac{19}{3}$ or $x \le -5$ (c) $x \ge -5$ (d) $x \le \frac{19}{3}$ (e) $-5 \le x \le \frac{19}{3}$

$$-17 \le 3x-2 \le 17$$

$$\frac{-15}{3} \le \frac{3}{3} \le \frac{19}{3}$$

12. Let r be a real number-positive, negative or zero. Which of the following numbers is always greater than r?

(a) $r^2 + 1$ (b) 2r (c) $\sqrt{|r|} + \frac{r}{2}$ (d) $(r+1)^3$ (e) r^{100}

(b) if r <- 1, 2r < r (4) if r=100, $\sqrt{100} + \frac{190}{2} = 10+50 = 60 < r$ (d) it r<-3, (+1)3<-8 < r

(e) if |r|<1, r'0<r

13. Ms Trong gets a ten percent raise every year. Her salary after four such raises has gone up by about what percent?

(a) 40%

(b) 42%

(c) 44% (d) 46%

(e) 48%

Let X= salary.

After 1yr, salary is 1.1x

After 4 yrs, salary is 1.14 X

1.14 = 1.21 (1.21) = 1.4641

=)~46 % increase

14. Given this regular hexagon of side $\sqrt{3}$, squares DEFG and CBGH, line ABD, find the area of the triangle ABC.

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{3}$ (d) $\frac{\sqrt{3}}{6}$ (e) none

reasure of interior angles of regular hixagon =120°

mcGFE=90° (square) =) mcGFH=30°

also mcGHF=30°

=) DGFH isoxeles =) #G=FG=DCBGH

=) McDGB=60° and its an isosceles D smee

BG=06 =) DB60 agrilateral D

but m LOB 6 + m LGBC + m LCBA = 180° (straight line) 60° + 90° + m LCBA = 180° m LCBA = 30°

=) DABC is
$$30/40/90$$
 D

Fig. 10. $GF = 1$

The second of $GF = GB = BC$

The second of $GF = G$

15. For a function defined for all natural numbers by

$$f(n+1) = f(n) + f(n-1),$$

and beginning with f(1) = 1, f(2) = 1, for which value of n is f(n) a multiple of 4?

- (a) If n = 3k, then f(n) is a multiple of 4
- (b) If n = 4k, then f(n) is a multiple of 4
- (c) If n = 5k, then f(n) is a multiple of 4
- (d) If n = 6k, then f(n) is a multiple of 4
- It is not possible to predict which terms will be a multiple of 4.

$$f(1)=1$$
 =) $f(3)=f(2)+f(1)=1+1=2$
 $f(n+1)=f(n)+f(n-1)$ $f(4)=f(3)+f(2)=2+1=3$
 $f(5)=f(4)+f(3)=3+2=5$
Fibonacci sequence
 $1,1,2,3,5(8),13,21,34,55,89,(144)...$

16. If you lose 20% on an investment during the first year and gain 25% the following year, what is your net gain over the two years?

0% (b) 5% (c) 2.5% (d) -5% (e) 1.259 X= investment after one year, investment = 0.8 \times after second year, investment is $1.25(0.8x) = \frac{5}{4}(\frac{4}{5}x) = x$ =) were back to where we started, ce. 0 not gain 17. The number 2^{29} is a 9-digit number with distinct digits. Which digit is missing?

18. If this pattern continues, where would the number 289 apppear?

- (a) 8th element in row 16
- 9th element in row 17
- (c) 9th element in row 18
- (d) last element in row 17
- last element in row 18

19. A set of 26 encyclopedias (one for each letter) is placed on a bookshelf in alphabetical order from left to right. Each encyclopedia is 2 inches thick including the front and back covers. Each cover (front or back) is 1/4 inch thick. A bookworm eats straight through the encyclopedias, beginning inside the front cover of volume A and ending after eating through the back cover of volume z. How many inches of book did the bookworm eat?

20. Solve for x. $2x^2 - 3x = 9 - 3x^2$

(a)
$$\frac{3\pm 3\sqrt{7}}{10}$$

(b)
$$\frac{-3\pm3\sqrt{2}}{10}$$

(c)
$$\frac{3\pm3\sqrt{21}}{10}$$

$$(d) \quad \frac{3\pm\sqrt{171}i}{10}$$

$$(e) \quad \frac{-3\pm3\sqrt{7}}{10}$$

$$5x^{2}-3x-9=0$$

$$a=5 b=-3 c=-9$$

$$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{3\pm\sqrt{9-4(5)(-9)}}{2(5)}$$

$$=\frac{3\pm\sqrt{9(1+20)}}{10}=\frac{3\pm3\sqrt{21}}{10}$$

21. If w, x, y, z are positive real numbers such that w + x + y + z = 2, then

$$N = (w+x)(y+z)$$

satisfies

(a)
$$0 \le N \le 1$$

- $(d) \quad 3 \le N \le 4$

Do first easy chech
$$X=y=w=2=\frac{1}{2}$$

$$N=(\frac{1}{2}+\frac{1}{2})(\frac{1}{2}+\frac{1}{2})=(=) \text{ either (a) or (b)}$$

$$Try x=\frac{1}{6} y=\frac{1}{6} z=\frac{1}{6} w=\frac{3}{2}$$

$$=) N=(\frac{3}{2}+\frac{1}{6})(\frac{1}{6}+\frac{1}{6})=(\frac{10}{6})(\frac{7}{6})=\frac{5}{3}(\frac{1}{3})=\frac{5}{9}<(\frac{1}{6})$$

$$=) (a)$$

- 22. Triangle ABC has sides 10, 24, and 26 cm long. A rectangle that has an area equal to that of the triangle has width 3 cm. Find the perimeter of the rectangle.

- (b) 43 cm (c) 56 cm (d) 68 cm (e) 86 cm

We can tell its a right I since the side lungths are multiple of 5-12-13 Pythogorean triple, Ph 26 3 $A = \frac{1}{2}(10)(24)$ A = 3x= 120 =) 120 = 3x \(\end{a}\) x=40 Perimetrof rectargle = 2(40)+2(3)

=80+6=86

23.
$$_{m}P_{n} = {}_{10}C_{7}$$
 for what values of m and n ?

(a)
$$m = 7, n = 10$$

(b)
$$m = 10, n = 3$$

(a)
$$m = 7, n = 18$$

(b) $m = 10, n = 3$
(c) $m = 5, n = 4$
(d) $m = 5, n = 1$
(e) $m = 7, n = 5$

$$(d)$$
 $m=5, n=1$

(e)
$$m = 7, n = 5$$

$$\frac{10}{7!3!} = \frac{10! - 10.9.8}{3.2.1} = 10.4.3$$

$$= 5.4.3.2 = 5!$$

$$= \frac{5!}{1!} = \frac{5!}{(5-4)!} = 5^{1}$$

24. A recipe calls for $\frac{2}{3}$ of a cup of sugar. You find that you only have $\frac{1}{2}$ cup of sugar left. What fraction of the recipe can you make?

$$(a)$$
 $\frac{1}{6}$

$$(b) = \frac{1}{3}$$

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$ (e) $\frac{4}{3}$

(e)
$$\frac{4}{3}$$

$$X=$$
 fraction of recipe I can make
$$\frac{1}{2}=X(\frac{2}{3})$$

$$\frac{1}{2} = x$$

$$\frac{3.1}{2.2} = X \iff X = \frac{3}{4}$$

25. Find the measure of y given the following picture and the fact that p||n||m.

- (a) 46°
- (b) 62°

- (c) 106^o (d) 74^o (e) 59^o

$$2x-18+x+12=180 y+(x-15)+(x+12)=180
3x-6=180 y+(62-15)+(62+12)=180
x=62° y+47+74=180
y+121=180
y=59°$$

- 26. In three years, Mary will be three times my present age, and I will be half as old as she. How old is Mary now?
 - (a) 6 yrs
- (c) 15 yrs (d) 24 yrs
- (e) 27 yrs

- 27. Fred can mow the lawn in 3 hours. Joe can do it in 2 hours. If Fred, Joe and Susan work together to mow the lawn, they can do it in $\frac{12}{13}$ of an hour. How long does it take Susan to mow the lawn herself?
 - (a) 2 hrs (b) 3 hrs (c) 4 hrs (d) 5 hrs (e) 6 hrs

F 3 hrs

J 2 hrs

S x hrs

$$\frac{1}{3} + \frac{1}{2} + \frac{1}{x} = \frac{1}{12/3}$$

together $\frac{12}{3}$ hr

 $12x(\frac{1}{3} + \frac{1}{2} + \frac{1}{x}) = \frac{13}{12}(12x)$
 $4x + 6x + 12 = 13x$
 $12 = 3x$
 $4 = x$

28. A young man spent $\frac{1}{4}$ of his allowance on a movie. He spent $\frac{11}{18}$ of the remainder on afterschool snacks. Then from the money remaining, he spent \$3 on a magazine, which left him with $\frac{1}{24}$ of his allowance to put into savings. How much of his allowance did he save?

$$\frac{1}{4} \times + \frac{11}{18} \left(\frac{3}{4} \times \right) + 3 + \frac{1}{24} \times = X$$

$$\frac{1}{4} \times + \frac{11}{24} \times + 3 + \frac{1}{24} \times = X$$

$$\frac{1}{4} \times + \frac{12}{24} \times - X = -3$$

$$\frac{3}{4} \times - X = -3$$

$$\frac{3}{4} \times - X = -3$$

$$\frac{1}{4} \times - 3 \iff X = 12$$

- 29. Sally has 4 red flags, 3 green flags and 2 white flags. How many 9-flag signals can she run up a flagpole?
 - (b) $\frac{7!}{4}$ (c) 9! (d) $\frac{9!}{4!3!}$ (e) $\frac{7!}{4!3!}$ (a) 4!3!2!

$$q^{C_{4}} \leq C_{3} \geq C_{2} = \left(\frac{9!}{4!5!}\right) \left(\frac{5!}{3!2!}\right) (1)$$

$$= \frac{9.8.7.6.5}{3.2.2} = 9.7.5.4 = 7.5.4.3(3)$$

$$= \frac{7.6.5.4.3.2}{4} = \frac{7!}{4}$$

- 30. At a party, 66 handshakes took place. Each person shook hands exactly once with each of the others present. How many people were at the party?

- (b) 10 (c) 11 (d) 12

1+2+3+...+n = total # handshakes, assuring n+1 people there 1+2+3+...+n=66=n(n+1)132=n2+n $n^2+n-132=0$ (n+12)(n-11)=0 =) 12 people present n=11,+x = party