Carvedilol Improves Hypoglycemia Awareness in Rats

II. Methods

Saline or Carvedilol (3mg/kg; IP)

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Days 2-4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent Saline or 2DG (200mg/kg; SQ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline or Insulin (25U/kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 – Left Panel: Plasma glucose concentrations were significantly lower in the animals receiving an insulin injection on day 5 compared to those receiving a saline injection. Importantly, the level of hypoglycemia was well matched between insulin-treated animals. Right Panel: Food consumption data on day 5 shows that the reduction of hypoglycemia in saline-treated animals increased food consumption significantly compared to saline-treated animals that were injected with saline (†P<0.01 vs Saline). When the animals were made hypoglycemia unaware with 2DG (●), food consumption in response to hypoglycemia was reduced significantly compared to the insulin group (***P<0.04 vs Saline+Insulin), suggesting that the 2DG animals were less aware of hypoglycemia compared to animals treated with insulin. Finally, treatment of 2DG-treated animals with Carvedilol (●) increased food consumption in response to hypoglycemia compared to the 2DG+Insulin animals (#P<0.01 vs 2DG+Insulin).

III. Results

IV. Conclusions

• Treatment with Carvedilol improved hypoglycemia awareness in rats made hypoglycemia unaware with 2-DG.
• Carvedilol may be a useful therapy to prevent the development of counterregulatory failure and improve hypoglycemia awareness in patients with diabetes.
• In order to investigate a more clinically applicable model, we began to repeat this study using a diabetic rat model. While the results do not yet have enough power to demonstrate statistical significance, the trend points toward similar results (Figure 2). The studies in the diabetic rodent model are currently ongoing.

V. Acknowledgements

• This work was supported by funding from the Summer Program for Undergraduate Research at the University of Utah awarded to Levi Neely. Study conducted with the generous funding support of the NIH and JDRF, as well as the U of U Undergraduate Research and Creative Opportunity Grant and lab assistance from the U of U Division of Endocrinology, Metabolism and Diabetes.

Levi Neely
Utah Valley University
Department of Biology
levineely@gmail.com

Kimberly Chapman-Natewa
University of New Mexico

Rawad Farhat, MD
University of Utah

Owen Chan, PhD
University of Utah

I. Introduction

Type 1 and severe Type 2 diabetics rely on intensive insulin therapy to improve metabolic control and reduce long-term diabetic complications. However, this treatment also increases the risk of hypoglycemia by 3-6 fold. Recurrent hypoglycemia (RH) diminishes the sympathoadrenal response, which reduces awareness of hypoglycemia and increases morbidity. Finding therapeutic treatments to prevent hypoglycemia and/or improve hypoglycemia awareness (HA) in patients with diabetes is of great importance. We and others have shown that repeated activation of the central adrenergic system may initiate downstream events that result in hypoglycemia unawareness, hence, β-blockers may be a useful therapy to help improve HA.

Carvedilol is an FDA approved non-specific β-blocker that is lipophilic and has a good safety profile. This study seeks to determine if Carvedilol can improve awareness of hypoglycemia in a rodent model of hypoglycemia unawareness.

Hypoglycemia unawareness is evaluated in humans using a questionnaire that rates the intensity of hypoglycemia symptoms. Rodents are unable to use such a questionnaire, therefore hunger or food seeking behavior may be used as a surrogate indicator of hypoglycemia unawareness in rodents.