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Abstract 

 

We present the SpatioTemporal Analysis of Remotely Sensed chl-a tool (STARS-c) tool, based 

on Google Earth Engine (GEE) and Landsat data. STARS-c characterizes water quality trends 

for any water body globally.  STARS-c allows a user to outline a water body, select a time range, 

and apply a general or user-provided model to estimate chlorophyl-a (chl-a) concentrations. 

STARS-c generates maps of chl-a concentrations and provides chl-a concentrations over time. 

Historically, remote sensing data use required significant computational resources because of the 

data size. STARS-c leverages GEE which performs computations remotely and requires only a 

web browser. STARS-c can help manage water resources in a sustainable manner. 

 

This paper primarily addresses UN Sustainability Goal 6: Clean Water and Sanitation, and Goals 

11, 13, and 14: Sustainable Cities and Communities, Responsible Consumption and Production, 

Climate Action, and Life Below Water, respectively. STARS-c provides a long-term time history 

of water quality, including spatially distributed concentration maps which can be used to better 

manage water resources  and waste water treatment (G6), provide input to help design and plan 

sustainable cities by identifying impacted water bodies and trends (G11), help locate water and 

waste water treatment plants and evaluate waste water treatment effectiveness over the last 40 

years (G13), provide data on long-term trends to help characterize and evaluate climate impacts 

and potential mitigation strategies (G13), and identify both sustainable and impacted water bodies 

to help address issues in life below water (G14). 
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Purpose 

 

Eutrophication of Freshwater Systems  

 

Eutrophication of surface waterbodies, which is defined as the excessive growth of algae and 

other organisms due to high nutrient levels in the water column (Khan and Ansari, 2005), is a 

prevalent, serious, and growing problem around the world. The effects of eutrophication, which 

include the growth of cyanotoxin-producing Harmful Algal Blooms (HABs) (Anderson et al., 2002), 

cause extensive environmental damage (Christoffersen, 1996, Paerl and Otten, 2013) in addition 

to economic losses in the form of increased drinking water treatment costs, spending on recovery 

of threatened and endangered species, diminished recreational use, and decreased value of 

waterfront real estate (Dodds et al., 2009). Eutrophication-related HABs also cause adverse 
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health effects for humans who are exposed or drink the water containing the toxins (Falconer, 

1999, Chorus and Welker, 2021). It is known that human activities contribute to eutrophication of 

surface waters by influencing the loading of growth-limiting nutrients to aquatic systems (Caraco, 

1995) and that increases in human population density and land use alterations are associated 

with eutrophication of nearby waterbodies (Smith, 2003).  

 

Eutrophication of waterbodies due to human activity is predicted to continue to increase (Bennett 

et al., 2001, Paerl and Huisman, 2009), so there is great need for tools that will help water 

managers evaluate strategies for preventing and remediating eutrophication.  Some success at 

preventing and remediating eutrophication has been achieved through methods such as 

controlling sources of nutrient pollution and conducting biological restoration efforts (Zhang et al., 

2020, Stuart, 2001); however, in order to predict the success of these strategies, which are often 

costly and difficult to implement, water managers must understand the nature and cause of the 

eutrophication (Carpenter et al., 1999). Examining historical data can provide significant insight 

into this question, but very few lakes and reservoirs around the world have any kind of historical 

water sampling data, let alone the comprehensive dataset that would be required to effectively 

analyze spatial and temporal trends in water quality.  

 

Water Quality Analysis using Remotely-sensed Data 

 

Using remotely-sensed data addresses the lack of historical and spatially comprehensive water 

sampling data—researchers have successfully used satellite data to examine water quality since 

the early 1970’s (Strong, 1974, Klemas, 2012, Richardson, 1996, Stumpf, 2001). The NASA 

Landsat satellite series, which has been generating useful data since 1984, collect multispectral 

images which can be used to evaluate plant growth, water quality, and other parameters (Brezonik 

et al., 2005, Hansen et al., 2015, Strong, 1974). Landsat images can be used to calculate 

estimates of chlorophyll-a (chl-a), a plant pigment often used as an index for algal biomass (Shi 

et al., 2019). Despite the ecological differences in freshwater systems around the world, they 

respond in similar ways to excess nutrient availability in the water column—specifically, with a 

marked increase in algal biomass and similar changes in species composition (Smith, 2003). 

Because of this, measuring changes in algal biomass (using chl-a as an index) is an effective 

method of studying trends in eutrophication for lakes and reservoirs anywhere in the world. Until 

recently, such analyses using remotely-sensed data were difficult and time consuming due to the 

large amount of data and the processing required to get the data in a usable form. The release of 

the Google Earth Engine (GEE) platform greatly simplified the work of retrieving, processing, and 

analyzing remotely sensed data, and makes it possible to analyze satellite data with just a web 

browser (Hansen, 2015).  

 

STARS-c: A Tool for Analyzing Algal Blooms with Landsat Data 

 

Building off of prior research using GEE to conduct analyses of algal bloom trends with Landsat 

data (Hansen et al., 2013) (Hansen et al., 2015) (Tate, 2019) (Cardall et al., 2021), we developed 

the SpatioTemporal Analysis of Remotely Sensed chl-a tool (STARS-c) to further simplify the 

process of conducting a remote sensing study and make it possible for anyone with an internet 
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connection to outline any water body, select a time range, and use either a general or user-

provided model to estimate chl-a concentrations for that water body from 1984 to the present. 

STARS-c can generate stand-alone maps of chl-a concentrations for selected dates and provide 

data on long-term time series of chl-a concentrations. It excludes “low quality” pixels, such as 

pixels with clouds or dry land, from the analysis. Data generated with STARS-c characterize the 

spatial and temporal patterns in algal biomass of the selected water body and help water 

managers evaluate the success of current and proposed strategies for preventing and mitigating 

eutrophication by helping to identify nutrient sources, regions most impacted by nutrient inflows, 

and other conditions affecting the water body.  

 

Methods 

 

Google Colabatory and Earth Engine 

 

Google Colabatory (Colab) is a service provided by Google Research 

(https://colab.research.google.com/). It allows developers and users to write and use python code 

in a web browser. Colab requires no configuration of the user’s computers, provides access to 

GPUs free of charge, and allows easy sharing of any developed code. Colab uses a “notebook” 

concept that includes both code and text cells to provide additional context for the code. GEE is 

integrated into Colab and, for most GEE computational requirements, the data and the code 

execute on Google servers and GPU units. This is important because of the large size and 

intensive computation needs of remoting sensing data. For long-term analysis, such as that 

provided by STARS-c, datasets cover over 40 years and can use anywhere between 100s of 

gigabytes to more than a terabyte of data. This processing occurs on GEE servers, accessed 

using Colab notebook. GEE resources can be accessed with python code outside of a Colab 

notebook, but the notebook framework provides a browser-based tool that can be used by water 

managers and researchers with limited access to advanced computer resources.  

 

STARS-c requires several python libraries. When a Colab notebook such as STARS-c is opened, 

it creates a new virtual environment on the Google servers. We install the required libraries on 

this environment in the first few cells of the notebook. 

 

To access GEE computational resources and data, a STARS-c user must have a Google Earth 

Engine account, and before STARS-c can be run, the notebook the user must authorize the 

notebook for their account. A notebook cell starts the authorization process, then provides a link 

for the STARS-c user to authorize the notebook to use their GEE account. Once the required 

libraries are downloaded and the account authorized, STARS-c is ready for use. 

 

Selecting a Water Body 

 

The first tasks in STARS-c requires the user to select a waterbody for analysis. STARS-c displays 

a global map where the user can zoom to a waterbody. The user then uses the drawing tools 

(shown on the left side of Figure 1 to draw a rectangle or other polygon around the waterbody. 
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This area will be used for all the subsequent analysis. The analysis will include any waterbodies 

included in the outline.  

 

Error! Reference source not found. shows an example where a user has selected Lake Taihu, in 

China, using a rectangular area. As shown by the map, this rectangle includes several small water 

bodies in the areas near Taihu Lake, these will be included in subsequent analysis. A user can 

draw a closed polygon to select a more detailed area of interest. In this way, the user can exclude 

surrounding wetlands from analysis or select a smaller area of the lake to analyze separately from 

the lake as a whole. 

 

After a user has created the geometry to select a waterbody, the notebook cell after the map 

(Figure 1) creates a variable that contains this geometry to define the area for all subsequent 

processing. If a user wants to analyze a different area or refine the geometry, they should re-run 

the cell that generates the map, re-draw the polygon, then run the cell that obtains the geometry.  

 

 
 

Figure 1. A cell showing the cell that displays a map, the cell displaying the map, the geometry created to select a 

water body, and the subsequent notebook cell that loads this geometry into a variable to define the processing area. 
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Satellite Data 

 

STARS-c uses Level-2, Collection 2, Tier 1 data from Landsat satellites 5, 7, 8, and 9. The user 

may modify the code to use different satellite data, but it is recommended to use this data. The 

Landsat satellites, designed to monitor ecological conditions on the earth’s surface, have a 16-

day return period, 30-meter spatial resolution, a combined range of 38 years (1984-present), and 

spectral bands specifically designed for vegetation studies, making them ideal for developing 

detailed time histories of algal concentrations in waterbodies (Brezonik et al., 2005) (Masek et al., 

2006) (USGS, 2016). Landsat Level-2 data include surface reflectance images, which are 

corrected for various sensor and atmospheric effects to best represent the spectral data that are 

reflected from the earth surface (https://www.usgs.gov/landsat-missions/landsat-collection-2-

level-2-science-products). Level-2 data also contains pixel quality information and surface 

temperature data. STARS-c does not currently use surface temperature data, but we hope to 

include surface temperature summary statistics as an export in the future. Collection 2 images 

are the product of a second reprocessing effort of Landsat data and contain numerous 

advantages over Collection 1 data (https://www.usgs.gov/landsat-missions/landsat-collection-2). 

For this application, notable improvements include consistent quality assessment bands, 

improved radiometric calibration, and improved surface reflectance and surface temperature 

products. Tier 1 images are the highest-quality products from the available data. Landsat Level-

2, Collection 2, Tier 1 images are readily available through Google Earth Engine. 

 

STARS-c collects every image that contains the user-specified water body available from the 

Landsat archive, as shown in  

Figure 2Error! Reference source not found.. 

 

 
 

Figure 2. Collecting each image containing the waterbody into an image collection for each satellite (Landsats 5, 7, 8 

and 9). 

 

Data Preparation 

 

STARS-c performs three operations to prepare the data for evaluation of chl-a concentration: 

applying the appropriate scaling factor to the bands, renaming the bands, and combining the 

resulting image collections into a single collection.  

Figure 3 shows the code used to apply the scaling factors specified by the USGS as a function. 

It also shows the code used by STARS-c to apply or map this function over the different Landsat 

image collections. The scaling factors used for Collection 1 data are different from Collection 2 

data; if the user wishes to use Collection 1 data, they will need to modify the code to apply the 
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correct scaling factors.  

 

 
 

Figure 3. Applying the USGS-specifed scaling factors to the bands in the image. Note that optical bands and thermal 

bands have different scaling factors and offsets.  

 

Renaming the bands is not necessary, but it both simplifies computations and makes the code, 

especially model expressions, more readable. If the bands were not renamed, we would need 

different function expressions for each Landsat mission; by renaming the bands, a single 

expression can be used for all the Landsat missions.  

Figure 4 shows the function that renames the bands along with the GEE code the applies (i.e., 

“maps”) the function over each image collection. Landsat 5 and 7 data have different band 

designations from Landsat 8 and 9, so different functions are used. 

 

 
 

Figure 4. Renaming the bands STARS-c uses in analysis. A different function is used for Landsats 5 and 7 than 

Landsats 8 and 9, because they have different band designations.  

 

Merging each satellite collection into a single image collection is also not strictly necessary, but it 

also simplifies computation. STARS-c data exports include the name of the satellite for each 

image in case it is needed. The code that merges the collections is shown in  

Figure 5. 
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Figure 5. Code to merge image collections. 

 

Image Processing 

 

Land Masking 

 

STARS-c estimates the chl-a for water pixels only. We accomplish this by first trimming the image 

to the boundaries of the user-drawn polygon for the water body, as shown in  

Figure 6.  

 

 
 

Figure 6. Trimming the image to the polygon drawn for the water body. All pixels inside this polygon will be evaluated 

for the presence of water and pixel quality, and chl-a concentration will be estiamted for each pixel. 

 

STARS-c then applies a water mask using a user-specified water index. Three water indices to 

choose from are available in a dropdown menu, as shown in  

Figure 7: the Normalized Difference Water Index (NDWI), the Modified Normalized Difference 

Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI). 

 

 
 

Figure 7. Drop-down menu to select a water index. Information about these indices is provided in a markdown cell to 

assist the user in selecting an index. 

 

The user may also modify the code to specify their own water index of choice. The user must 

specify a threshold value to distinguish land from water. Users should modify this threshold using 

the visual feedback STARS-c provides to find a number that accurately represent water areas for 

the waterbody of interest. The water masks are sensitive to water color, turbidity, and other issues, 

and each water body generally requires some trial and error to select the correct threshold value. 

Once these parameters have been specified, STARS-c will construct a water mask, as shown in 

Error! Reference source not found.. Error! Reference source not found. shows the polygon-

trimmed RGB image of Lake Taihu (left), the mask that the code creates for this image (middle), 

and the resulting land-masked image (right). 
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Figure 8. Masking pixels that contain land. The code gives each pixel a water index based on the prodived model 

and masks any pixels that are not withing a specified threshold. 

 

 
 

Figure 9. Land masking an image of Lake Taihu. The left panel shows the real-color image, the middle panel shows 

the land mask (with red indicating expelled land pixels),and the right panel shows the land-masked real-color image. 

 

Quality Masking 

 

STARS-c eliminates pixels containing clouds and cloud shadows from analysis by applying a 

cloud mask to each image. The cloud mask uses the pixel quality assessment band available in 

all Level 2 data. Use of this band requires bitwise operation, as shown in  

Figure 10. For Collection 2 data, bit 3 of the quality band indicates the presence of a cloud and 

bit 4 indicates the presence of a cloud shadow. We use bit 9 to set our “cloud confidence” to high 

to ensure bad pixels are masked.  

Figure 11 shows a land-masked RGB image of Taihu Lake (left), the cloud mask that the code 

creates for this image (middle), and the resulting quality-masked image (right). 
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Figure 10. Masking low-quality pixels, including those with clouds and cloud shadows. The code can be read to say: 

if bits 3 and 9 are set, i.e., there are clouds and confidence in there being clouds is high, or if bit 4 is set, i.e., there is 

a cloud shadow, then mask the pixel. 

 

 
 

Figure 11. Quality masking an image of Lake Taihu which contains some clouds and cloud shadows. The left panel 

shows the real-color image, the middle panel shows the cloud mask (with the red portion inidicating the expelled 

pixels), and the right panel shows the masked real-color image. 

 

Chl-a Concentration Computation 

 

At this stage, the images are ready to be analyzed for chl-a. STARS-c presents seven chl-a 

models from the literature in a drop-down menu that can be selected by the user, as shown in  

Figure 12. This drop-down menu is accompanied by a description of each of the models, as well 

as the model. 

 

The models presented by STARS-c were developed for specific water bodies with their own algal 

growth limitations and other unique properties. We strongly recommended using or developing a 

chl-a model for the waterbody being analyzed using in-situ data, if possible. If such a model is 

available, the user can modify the code to use this model. This modification is relatively simple, 

as users can use the existing models as examples of how to add a new model (or replace an 

existing model). In many cases, the site-specific model will use the form of one of the provided 

models and only the coefficients will need to be changed. 
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Figure 12. Dropdown menu to select a chl-a model. Information about these indices is provided in a markdown cell to 

assist the user in selecting an index. 

 

Error! Reference source not found. shows the code which applies the model selected for analysis. 

This code shows the names of the Landsat bands that are used in the model definition. We 

renamed the Landsat bands to common terms because this allows a single model expression to 

work across the different Landsat missions, which use different band designations.  

 

. 
 

Figure 13. Applying the specified chl-a model to the image. All pixels determined to be water and free of clouds and 

cloud shadows will be evaluated for chl-a. 

 

Metadata 

 

For analysis of long-term chl-a trends, it is useful to retain metadata from the original satellite 

data. STARS-c retains and exports the date of the satellite image in two different formats, 

“MM/dd/yyyy”, and “MMM dd yyyy hh:mm:ss”, this are included in columns titled “Date” and 

“Date2” in the exported .csv file, respectively.  In addition, STARS-c retains and exports the 

satellite name (e.g., Landsat5 or Landsat8) as a column in the exported .csv file. These data can 

help analysis completed outside STARS-c using the exported data.  

 

Summary Statistics 

 

STARS-c computes and can export statistical parameters for the waterbody selected for analysis. 

This is done for each image in the collection that contains data--some images contain no data 

due to complete cloud cover or other issues. The statistics are for the selected waterbody and 

only include pixels with viable data but will include any water pixels in the defined geometry, even 

if they are not part of the main waterbody. Pixels are not included in the statistics if they are 
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masked; for example, pixels can be masked because they contain land or clouds or are poor 

quality. The number of pixels included as data for each image is also computed and exported. 

The number can change for each image, as each image can contain a different number of useful 

pixels because of clouds or changing water levels that expose or cover shoreline. 

 

STARS-c computes the count (number of pixels used in the analysis for that image or time step), 

median, mean, standard deviation, minimum, maximum, skew, and the 5th, 10th, 25th, 50th, 75Th, 

90th, and 95th, percentiles. The 50th percentile is the same as the median, so it is reported twice. 

STARS-c computes these data for each image in the collection. When STARS-c exports the data, 

the two date formats and the satellite which collected the image are also added as columns in the 

.csv file.  

 

Visualization 

 

STARS-c provides a set of cells to visualize the computed chl-a concentrations as spatial images, 

and for various masks and other information used in the computation. In addition to an interactive 

map cell where users can toggle various layers on-and-off, change color ranges, and modify other 

display characteristics, this cell provides links to images of the various masks and the final chl-a 

concentration image. These links open the images in individual browser tabs where the image 

can be viewed, copied, or downloaded.  

 

Exports 

 

STARS-c can export the long-term time series data to a .csv file on the user’s Google Drive. The 

.csv files will be placed in a folder titled “STARS-c_Output”. STARS-c exports the data using an 

asynchronous background process. Depending on the size of the area and the number of images 

in the collection, this can take some time--it usually completes in about 30 minutes to an hour, 

though often sooner. STARS-c is not able to show the status of these exports. However, if the 

user logs into the GEE code editor (which only supports JavaScript), there is a “task” tab which 

the user can use to determine the status of the export. 

 

The relatively short time required to compute and export these statistics shows the power of using 

the GEE servers for processing. This process analyzes over 1,000 images for most areas, 

computes multiple statistics using each pixel in the image, and exports the resulting data. The 

data are in a format that users, managers, and researchers are familiar with: a .csv file with dates 

and values in sequence. These data can then be used for further analysis.  

 

Findings 

 

STARS-c Output Examples 

 

The following examples demonstrate the basic use of STARS-c in generating visualizations of 

chl-a on a waterbody and analyzing time series data. For the time series plots, the median chl-a 

measurement for the whole lake in each image was used; and data points above a chl-a 
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concentration of 300 µg/L were excluded because they are likely bad values that the masks failed 

to exclude and make graphs unreadable. When analyzing data, STARS-c users should pick their 

own outlier exclusion thresholds based on the data generated and general knowledge of typical 

algae concentrations in the waterbody of interest. These examples focus on turbid lakes because 

the high-turbidity model included in STARS-c has been well-studied.  

 

Lake Taihu 

 

Lake Taihu is a large, turbid, very shallow lake in the Jiangsu province in China. It is an important 

water resource for the area, but has attracted concern due to intense eutrophication caused by 

aquaculture in the eastern part of the lake, urban pollutants, and other human-caused nutrient 

loading.  

Figure 14 shows an image from August of 2016 masked and visualized with STARS-c. From 

these images, it’s clear that on that particular day algal blooms were most intense on the 

northwest side of the lake, with lower concentrations towards the middle.  

 

 
 

Figure 14. The polygon-cut real-color image (left), land- and quality-masked image, and chl-a image of Lake Taihu in 

August 2016. 

 

 
 

Figure 15 is an example of the type of visualization that can be created with the data exported by 

STARS-c. The plot shows the median chl-a concentration in every image of Lake Taihu collected 
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by Landsat over the ~40-year period analyzed. The data are sparser at the beginning of the series 

because there was only one satellite collecting data—Landsat 5—but as successive missions 

were launched and old satellites remained operational, the density of the data points increased, 

leading to more frequent data for later years.  

 

 
 

Figure 15. Time series history of median chl-a in Lake Taihu from 1985 to 2022 

 

Malheur Lake 

 

Malheur Lake is another large, shallow lake with high-turbidity water located in eastern Oregon, 

United States. It has also faced challenges associated with eutrophication and high nutrient loads, 

and in the Landsat image from August 2013 visualized in  

Figure 16, it is clear that algae biomass in the lake can be quite large.  

 

 
 

Figure 16. The polygon-cut RGB image (left), land- and quality-masked image, and chl-a image of Malheur Lake in 

August 2013. 

 

The time series plot for Malheur Lake, shown in  

Figure 17, shows that the algae concentrations are highly variable but follow a distinct seasonal 

trend with higher concentrations in the summer, which is to be expected.  
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Figure 17. A time-series plot of the average chl-a concentration for Malheur Lake over the nearly 40-year period of 

Landsat data. 

 

Utah Lake 

 

Utah Lake, in the northern part of Utah, United States, shares many characteristics with Taihu 

Lake and Malheur lake, and is also the subject of much concern over eutrophication. We have 

conducted remote-sensing and other types of research on this lake prior to the development 

STARS-c, and with this background knowledge of the lake’s ecology and hydrology, the 

visualizations and time series data generated with STARS-c become much more meaningful and 

useful. For example, we know that the bay on the east side of the lake (Provo Bay) is very shallow 

and typically has lower-turbidity water than the rest of the lake. In an image from July of 1986, 

shown in  

Figure 18, algal concentrations in Provo Bay are higher than much of the lake, so this combined 

with the likelihood of that water being clearer has interesting implications for our understanding of 

what factors contribute to algal growth in Utah Lake. In addition, we know that the eastern shore 

of the lake is significantly more developed than the western shore, so we can examine spatial 

distributions of chl-a within that context to provide further insights into how shoreline development 

might impact algal blooms. 
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Figure 18. The polygon-cut  image (left), land- and quality-masked image, and chl-a image of Utah Lake in July 1986. 

Grey swirls are regions with high suspended sediemnts, the darker green color correlates with higher chl-a 

concentrations.  

 

 

Figure 19 shows the time series plot of chl-a concentrations on Utah Lake. In this case also, prior 

knowledge of the lake allows us to analyze the data more rigorously. For example, we can 

examine how past and current river delta restoration projects on Utah Lake tributaries may have 

impacted algal concentrations in the lake at the outlet of those tributaries, or determine to what 

extent algal concentrations correlate with the dramatic population growth on the eastern shore 

that has occurred over the last 40 years.  

 

 
 

Figure 19. A time-series plot of the average chl-a concentration for Utah Lake over the nearly 40-year period of 

Landsat data.  
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Deer Creek Reservoir 

 

This example was included to show how STARS-c handles a waterbody with clear water and 

typically low concentrations of algae. Deer Creek Reservoir, in the northern part of Utah, United 

States, is very deep and clear, with much lower temperatures than the other three lakes; though 

in recent years the Utah State Department of Water Quality has observed harmful algal blooms 

and there is some concern over the ecological health of the reservoir.  

 

 

Figure 20 is a visualization of a Landsat image from July of 1986 and shows that concentrations 

of algae in Deer Creek on that day were extremely low. The model used to calculate chl-a 

concentrations for this reservoir was the Clear Whole Season model included in STARS-c, which 

was developed specifically for Deer Creek using water sampling data, so this model provides 

more accurates result for this lake than the Turbid Whole Season model used for the other three 

lakes would.  

 

 
 

Figure 20. The polygon-cut RGB image (left), land- and quality-masked image, and chl-a image of Deer Creek in July 

1986. There is a small cloud and cloud shadow in the northern part of the image that results in the area being 

masked. Chl-a concentrations in Deer Creek are significantly lower than Utah Lake, which is approximately 25 km 

downstream. 

 

 

Figure 21, the time series visualization of median chl-a data on Deer Creek Reservoir, looks quite 

different from the time series of the more turbid, eutrophic lakes. In this case, it appears that algal 

concentrations in Deer Creek are typically very low, with the occasional large spike in 

concentration representing a large bloom. From this graph, it appears that there could be a trend 
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of increasing frequency for these blooms,  however, this may be due to the higher frequency of 

data in late years, which is the result of more satellites collecting data.  

 

 
 

Figure 21. A time-series plot of the average chl-a concentration for Deer Creek reservoir over the nearly 40-year 

period of Landsat data. 

 

Research Limitations  

 

While STARS-c outputs data as chl-a concentrations, these measurements may not be highly 

accurate for any given water body due to the limitations inherent in remote sensing. The data can 

still be useful, though, because the change in concentrations between images or over the long-

term should be relatively accurate, and therefore can be used effectively to analyze spatial and 

temporal trends. To obtain accurate concentrations, the user would need to use in-situ data from 

the water body to fit a chl-a model specific to that lake or reservoir. While STARS-c provides a 

long-term history of chl-a concentrations, it is important to understand the dynamics and 

processes of the specific waterbody of interest. For example, if there is a large nutrient source, 

such as a waste-water treatment plant, the integrated statistics would not necessarily show that 

impact. Individual images could show some impact, depending on the size and circulation patterns 

of the lake, but would not include the long-term trend. Users can place smaller geometric regions 

around a lake, isolating various areas, and generate the long-term statistics for that area. These 

segments can then be used to compare different regions of the lake or to compare a small area 

to the larger lake as a whole in order to provide better insight into spatial variation.  

 

Originality and STARS-c Value 

 

STARS-c allows water managers and researchers to visualize, evaluate, and analyze long-term 

trends in chl-a concentrations in waterbodies across globe. It runs in a browser and uses cloud 

resources, meaning that STARS-c is not resource constrained and requires minimal 

computational infrastructure. Access to STARS-c is available upon request. 
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