Solving Systems of Linear Equations

UVU Math Lab

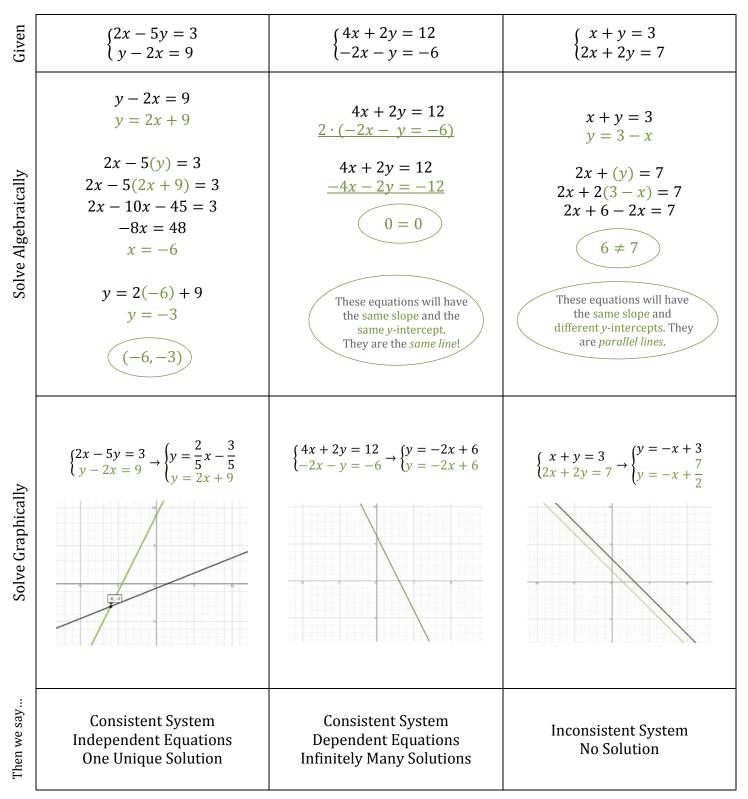
Method of Substitution:	$ \land \land$
Solve the given system of equations: $ \begin{cases} 2x + 3y = 3 \\ 3x - 4y = 13 \end{cases} $	We use substitution usually when it is easy to solve one of the equations for x or y because it has a coefficient of 1.
STEP ONE:	(1) $2x + 3y = 3$
We number each equation.	(2) $3x - 4y = 13$
STEP TWO:	
Choose one equation and solve for one variable.	(1) 2x + 3y = 3
STEP THREE: Substitute the expression found in step 1 for the variable in the second equation to get an equation in one variable.	$2x = 3 - 3y$ $x = \frac{3}{2} - \frac{3}{2}y$ $(2) 3\left(\frac{3}{2} - \frac{3}{2}y\right) - 4y = 13$ $\frac{9}{2} - \frac{9}{2}y - \frac{8}{2}y = \frac{26}{2}$ $\frac{-17}{2}y = \frac{17}{2}$
STEP FOUR: Back substitute the solution for the variable you have solved for into either one of the original 2 equations and solve for the other variable. STEP FIVE: Write your solution as an ordered pair.	y = -1 (1) 2x + 3(-1) = 3 x = 3 (3, -1)

Solving Systems of Linear Equations

UVU Math Lab

Method of Elimination:

Solve the given system of equations:


1	(2x + y + 2) = 11
1	3x + 2y + 2z = 8
	x + 4y + 3z = 0

STEP ONE: Number each equation.	(1) $2x + y + 2 = 11$ (2) $3x + 2y + 2z = 8$ (3) $x + 4y + 3z = 0$
 STEP TWO: Choose any two equations and eliminate one variable using the elimination method. We add equations (1) and (3) and eliminate the <i>x</i> variable by multiplying equation (3) by – 2. The new equation is equation (4) 	(1) $2x + y + 2 = 11$ -2(3) -2x - 8y - 6z = 0 (4) $-7y - 4z = 11$
STEP THREE: Choose a DIFFERENT pair of equations and eliminate the SAME variable. We will add equations (2) and (3) and eliminate the x variable by multiplying equation (3) by – 3. The new equation is (5).	(2) $3x + 2y + 2z = 8$ -3(3) -3x - 12y - 9z = 0 (5) $-10y - 7z = 8$
STEP FOUR: Equations (4) and (5) create a system of two equations in two variables which we already know how to solve.	$(4) -7y - 4z = 11(5) -10y - 7z = 8\downarrow \qquad \qquad$
STEP FIVE: Back substitute the solutions for the 2 variables you have solved for into any one of the original 3 equations and solve for the third variable.	(4) $-7(-5) - 4z = 11$ -4z = -24 z = 6
Likewise, we will substitute $y = -5$ and $z = 6$ into equation (3). STEP SIX: Write your solution as an ordered triple:	(3) x + 4(-5) + 3(6) = 0 x = 2 (2, -5, 6)

Solving Systems of Linear Equations

UVU Math Lab

Systems of Linear Equations in Two Variables:

More handouts like this are available at: <u>www.uvu.edu/mathlab/mathresources/</u>