Partial Fraction Decomposition

UVU Math Lab

Using Systems of Equations:

Find the partial fraction decomposition for the following rational expression: \(\frac{2}{x^5+x^3-x^4-x^2} \)

STEP 1: Factor the denominator and set expression equal to the form of partial fraction decomposition with the unknown constants \((A, B, C,...)\) in the numerators of the decomposition.

\[
\frac{2}{x^2(x-1)(x^2+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} + \frac{Dx+E}{x^2+1}
\]

STEP 2: Multiply both sides by the LCD to eliminate denominators and multiply through.

\[
x^2(x-1)(x^2+1) \cdot \frac{2}{x^2(x-1)(x^2+1)} = \frac{A}{x} \cdot x^2(x-1)(x^2+1) + \frac{B}{x^2} \cdot x^2(x-1)(x^2+1) + \frac{C}{x-1} \cdot x^2(x-1)(x^2+1) + \frac{Dx+E}{x^2+1} \cdot x^2(x-1)(x^2+1)
\]

\[
2 = Ax(x-1)(x^2+1) + B(x-1)(x^2+1) + Cx^2(x^2+1) + (Dx+E)x^2(x-1)
\]

\[
2 = Ax^4 + Ax^2 - Ax^3 + Bx^3 + Bx - Bx^2 - B + Cx^4 + Cx^2 + Dx^4 - Dx^3 + Ex^2 - Ex^2
\]

STEP 3: Group like terms and write both sides of the equation in descending powers of \(x \).

\[
0x^4 + 0x^3 + 0x^2 + 0x^1 + 2x^0 = x^4(A + C + D) + x^3(-A + B - D + E) + x^2(A - B + C - E) + x(-A + B) - B
\]

STEP 4: Equate the coefficients of like powers and solve the resulting system of equations.

(4) \(x^4: 0 = A + C + D \)
(3) \(x^3: 0 = -A + B - D + E \)
(2) \(x^2: 0 = A - B + C - E \)
(1) \(x^1: 0 = -A + B \)
(0) \(x^0: 2 = -B \)

(0) \(2 = -B \) \rightarrow \(B = -2 \)
(1) \(0 = -A + (-2) \) \rightarrow \(A = -2 \)
(2) \(0 = (-2) - (-2) + C - E \)
(3) \(0 = (-2) - (-2) + C - E \)
(4) \(0 = (-2) + C + D \)
(5) \(0 = \frac{C}{D} \)
(6) \(0 = 2 + 2C \)

\(C = 1 \)
\(D = 1 \)

STEP 5: Substitute the values found for the unknown constants back into the decomposition.

\[
\frac{2}{x^2(x-1)(x^2+1)} = \frac{-2}{x} + \frac{2}{x^2} + \frac{1}{x-1} + \frac{x+1}{x^2+1}
\]

More handouts like this are available at: www.uvu.edu/mathlab/mathresources/
Partial Fraction Decomposition

UVU Math Lab

Using the Zero-Out Method:
(The Short Cut!)

Find the partial fraction decomposition for the following rational expression: \(\frac{2}{x^5+x^3-x^4-x^2} \)

<table>
<thead>
<tr>
<th>STEP 1: Factor the denominator and set expression equal to the form of partial fraction decomposition with the unknown constants (A, B, C,...) in the numerators of the decomposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{x^2(x-1)(x^2+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} + \frac{Dx+E}{x^2+1})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 2: Multiply both sides by the LCD to eliminate denominators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2(x-1)(x^2+1) \cdot \frac{2}{x^2(x-1)(x^2+1)} = A \cdot x^2(x-1)(x^2+1) + B \cdot x^2(x-1)(x^2+1) + C \cdot x^2(x-1)(x^2+1) + (Dx+E) \cdot x^2(x-1)(x^2+1))</td>
</tr>
<tr>
<td>(2 = Ax(x-1)(x^2+1) + B(x-1)(x^2+1) + Cx^2(x^2+1) + (Dx+E)x^2(x-1))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 3: Choose a value for (x) that will result in zero factors and solve for the remaining letter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = 0):</td>
</tr>
<tr>
<td>(2 = 0 + B(-1)(1) + 0 + 0)</td>
</tr>
<tr>
<td>(2 = -B)</td>
</tr>
<tr>
<td>(B = -2)</td>
</tr>
<tr>
<td>Let (x = 1):</td>
</tr>
<tr>
<td>(2 = 0 + 0 + C(1)(2) + 0)</td>
</tr>
<tr>
<td>(2 = 2C)</td>
</tr>
<tr>
<td>(C = 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 4: Substitute solved values into equation and then begin with STEP 3 on opposite side to solve any remaining values using systems of equations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 = Ax(x-1)(x^2+1) - 2(x-1)(x^2+1) + 1x^2(x^2+1) + (Dx+E)x^2(x-1))</td>
</tr>
<tr>
<td>(2 = Ax^4 + Ax^3 - Ax - 2x^3 - 2x + 2x^2 + 2 + 1x^4 + 1x^2 + Dx^4 - Dx^3 + Ex^3 - Ex^2)</td>
</tr>
<tr>
<td>(2 = x^4(A + 1 + D) + x^3(-A - 2 - D - E) + x^2(A + 2 + 1 - E) + x(-A - 2) + 2)</td>
</tr>
</tbody>
</table>

\(x^4: -1 = A + D \)
\(x^3: 2 = -A - D + E \)
\(x^2: -3 = A - E \)
\(x^1: 2 = -A \)

\(1 \) \(A = -2 \)
\(2 \) \(-3 = -2 - E \quad \rightarrow E = 1 \)
\(4 \) \(-1 = -2 + D \quad \rightarrow D = 1 \)

<table>
<thead>
<tr>
<th>STEP 5: Substitute the values found for the unknown constants back into the decomposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{x^2(x-1)(x^2+1)} = \frac{-2}{x} - \frac{2}{x^2} + \frac{1}{x-1} + \frac{x+1}{x^2+1})</td>
</tr>
</tbody>
</table>

More handouts like this are available at: www.uvu.edu/mathlab/mathresources/
The Four Types of Partial Fraction Decomposition:

Previously, we learned that in order to find the sum of rational expressions we had to find a common denominator.

\[
\frac{x}{x+1} + \frac{2}{x-1} - \frac{3}{x} = \frac{x + (x-1)(x+1)}{x(x-1)} - \frac{3(x+1)(x-1)}{x(x-1)(x+1)}
\]

With partial fraction decomposition, we reverse that process and split the rational expression into partial fractions, expressions with irreducible denominators.

Given the rational expression \(\frac{P(x)}{Q(x)} \), we factor the denominator, \(Q(x) \) and then set the expression equal to the partial fraction decomposition according to the following forms.

Type I:
The denominator is the product of distinct, non-repeating linear factors, such as \((x - a)\):

\[
\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} + \ldots
\]

Type II:
The denominator is the product of repeating linear factors, such as \((x - a)^n\):

\[
\frac{P(x)}{Q(x)} = \frac{C_1}{x-a} + \frac{C_2}{(x-a)^2} + \ldots + \frac{C_n}{(x-a)^n}
\]

Type III:
The denominator is the product of distinct irreducible quadratic factors (cannot be factored further) of the form \((ax^2 + bx + c)\):

\[
\frac{P(x)}{Q(x)} = \frac{Ax+B}{x^2+a} + \frac{Cx+D}{x^2+b} + \frac{Dx+E}{x^2+c} + \ldots
\]

Type IV:
The denominator is the product of repeating irreducible quadratic factors, such as \((ax^2 + bx + c)^n\):

\[
\frac{P(x)}{Q(x)} = \frac{C_1 x + C_2}{x^2+a} + \frac{C_3 x + C_4}{(x^2+a)^2} + \ldots + \frac{C_{m-1} x + C_m}{(x^2+a)^n}
\]

More handouts like this are available at: www.uvu.edu/mathlab/mathresources/