

Partial Fraction Decomposition (PFD)

1

This handout will introduce the key terms related to Partial Fraction Decomposition (PFD), explain the rules for applying it, and walk through examples using all three main cases.

Key Terms

- *Term* – A set of coefficients and/or variables separated by a plus (+) or minus (-) sign.
 $27x^2 + 5x - 7$ has 3 terms: $27x^2$, $5x$, and -7 .
- *Factor* – A term or sum of terms, the latter often contained in parenthesis, that create a product when multiplied by another factor.
 $3(x^2 + 4)(x - 5)$ has 3 factors: 3, $(x^2 + 4)$, and $(x - 5)$.
- *Product* – The answer to a multiplication problem.
The equation $2 \times 5 = 10$ contains factors 2 and 5, resulting in a product of 10.
- *Reducible Factor* – A factor that can be factored further than currently expressed.
The expression $(x^2 - 4)(x + 2)$ contains factors $(x^2 - 4)$ and $(x + 2)$. $(x^2 - 4)$ is a reducible factor, $(x^2 - 4) = (x + 2)(x - 2)$.
- *Irreducible Quadratic Factor* – A factor in the form of $ax^2 + bx - c$ that cannot be reduced using rational or real numbers.
While the expression $(x^2 + x + 4)(x^2 - 4)$ has 2 quadratic factors $(x^2 + x + 4)$ cannot be factored, making it an irreducible quadratic factor.
- *Repeated Factor* – A factor that has a multiplicity other than one.
The expression $x^3(x + 2)^2(x - 2)$ has the factor x repeated 3 times and the factor $(x + 2)$ repeated twice.

PFD Cases

Partial Fraction Decomposition has 3 possible outcomes:

Case 1

When the factor in the denominator is a linear-irreducible factor, it will be re-written as

$$\frac{A}{(ax - r)}$$

Case 2

When the factor is a repeated factor, it will be re-written as

$$\frac{A_1}{(ax - r)} + \frac{A_2}{(ax - r)^2} + \cdots + \frac{A_n}{(ax - r)^n}$$

Case 3

When the factor is an irreducible quadratic, it will be re-written as

$$\frac{Ax + B}{ax^2 + bx + c}$$

Partial Fraction Decomposition (PFD)

2

Partial Fraction Decomposition Case 1

Setup

Begin with the fraction expression:

$$\frac{x+2}{(x+1)(x-1)}$$

Step 1

The denominator has 2 linear factors: $(x+1)$ and $(x-1)$. This means that the expression will be rewritten like this.

$$\frac{A}{(x+1)} + \frac{B}{(x-1)}$$

Step 2

Set the expression equal to the original expression.

$$\frac{A}{(x+1)} + \frac{B}{(x-1)} = \frac{x+2}{(x+1)(x-1)}$$

Step 3

Multiply both sides by the denominator of the right side of the equation.

$$\frac{A}{(x+1)}((x+1)(x-1)) + \frac{B}{(x-1)}((x+1)(x-1)) = x+2$$

Step 4

Cancel out common terms. On the A term, $(x+1)$ cancels out. On the B term $(x-1)$ cancels out.

$$A(x-1) + B(x+1) = x+2$$

Step 5

Distribute A and B, then group the terms based on whether or not they have an x term.

$$Ax - A + Bx + B = x + 2 \rightarrow Ax + Bx - A + B = x + 2$$

$$(A+B)x + (-A+B) = x + 2$$

Step 6

Solve the resulting system of linear equations, where $(A+B)x = x$ and $(-A+B) = 2$.

$$A + B = 1$$

$$2B = 3, \boxed{B = \frac{3}{2}}$$

$$-A + B = 2$$

$$A + \frac{3}{2} = 1, \boxed{A = -\frac{1}{2}}$$

Step 7

Plug in A and B for the finished partial fraction decomposition:

$$\frac{-\frac{1}{2}}{(x+1)} + \frac{\frac{3}{2}}{(x-1)}$$

Partial Fraction Decomposition (PFD)

3

Partial Fraction Decomposition Case 2

Setup

Begin with the fraction expression:

$$\frac{x+2}{(x+4)^2}$$

Step 1

Notice that $(x+4)^2$ is a repeated linear factor. Following the steps previously stated for this case; split the fraction and have each successive fraction increase the denominator degree until the original degree is reached.

$$\frac{A}{(x+4)} + \frac{B}{(x+4)^2}$$

Step 2

Set this equal to the original fraction.

$$\frac{A}{(x+4)} + \frac{B}{(x+4)^2} = \frac{x+2}{(x+4)^2}$$

Step 3

Multiply both sides by the denominator on the right side of the equation.

$$\frac{A}{(x+4)}(x+4)^2 + \frac{B}{(x+4)^2}(x+4)^2 = \frac{x+2}{(x+4)^2}(x+4)^2$$

Step 4

Simplify and distribute factors.

$$A(x+4) + B = x+2$$

$$Ax + 4A + B = x + 2$$

Step 5

Solve for A and B as previously done, grouping terms into a system of equations and solving.

$$Ax = x, \boxed{A = 1}$$

$$4(1) + B = 2$$

$$4A + B = 2$$

$$\boxed{B = \frac{1}{2}}$$

Step 6

Plug in A and B for the final partial fraction decomposition:

$$\frac{1}{(x+4)} + \frac{\frac{1}{2}}{(x+4)^2}$$

Partial Fraction Decomposition Case 3

Setup

Begin with the fraction expression:

$$\frac{x+2}{x^2+4}$$

Step 1

Notice that $x^2 + 4$ does not have any real zeros. That means the polynomial will be rewritten like this:

$$\frac{Ax+B}{x^2+4}$$

Step 2

Set the rewritten version equal to the original fraction.

$$\frac{Ax+B}{x^2+4} = \frac{x+2}{x^2+4}$$

Step 3

Multiply both sides by the denominator on the right side of the equation.

$$\frac{A}{x^2+4}(x^2+4) = \frac{x+2}{x^2+4}(x^2+4)$$

Step 4

Simplify until the fractions are eliminated.

$$Ax + B = x + 2$$

Step 5

The equation can now be set to a system of linear equations.

$$A = 1 \quad B = 2$$

Step 6

Plug in A and B for the final partial fraction decomposition:

$$\frac{x+2}{x^2+4}$$