SYNTHETIC FACTORING TRINOMIALS OF THE FORM $ax^2 + bx + c$

UVU Math Lab

Synthetic Factoring (aka Darren Wiberg – Jon Anderson Method):

- 1. Given $ax^2 + bx + c$, find the value of *ac*.
- 2. Find the pair of integers whose product is *ac* and whose sum is *b*. That is, find *m* and *n* so that *mn* = *ac* and m + n = b.
- 3. Create fractions of the form $\frac{m}{a}$ and $\frac{n}{a}$.
- 4. Simplify the fractions formed in step 3, say $\frac{m}{a} = \frac{q}{p}$ and $\frac{n}{a} = \frac{s}{r}$.
- 5. Form the factors: (px + q)(rx + s).
- 6. Multiply out the factored form to verify your answer.

Example 1:	Example 2:	Grouping method from textbooks	
$12x^2 - x - 6$	$3x^2 - 11x + 10$	$3x^2 - 11x + 10$	
ac = -72, b = -1	ac = 30	ac = 30	
$mn = -72 = -9 \cdot 8$	$30 = -5 \cdot -6$	$30 = -5 \cdot -6$	
$m + n = -1 = -9 + 8$ $\frac{-9}{10} = \frac{m}{10}, \frac{8}{10} = \frac{n}{10}$	$\frac{-5}{3}$, $\frac{-6}{3}$	$3x^{2} - 11x + 10$ = $3x^{2} - 5x - 6x + 10$ = $(3x^{2} - 5x) + (-6x + 10)$ = $x(3x - 5) - 2(3x - 5)$	
$\frac{12}{4} = \frac{q}{2}, \frac{2}{2} = \frac{s}{2}$	$\frac{-5}{3}$, $\frac{-2}{1}$		
$ \begin{array}{cccc} 4 & p & 3 & r \\ (4x - 3)(3x + 2) \end{array} $	(3x-5)(x-2)	= (3x-5)(x-2)	

SYNTHETIC FACTORING TRINOMIALS OF THE FORM $ax^2 + bx + c$

The Magic Squares Method:

- 1. Given $ax^2 + bx + c$, find the value of *ac*.
- 2. Find the pair of integers whose product is *ac* and whose sum is *b*. That is, find *m* and *n* so that *mn* = *ac* and m + n = b.
- 3. Write four terms in the magic box as indicated: ax^2 : top left always, +c: bottom right always, +mx & +nx in either remaining diagonal box.

- 4. Pull out the greatest common factors from each row and each column.
- 5. Form the pair of factors.
- 6. Multiply out the factored form to verify your answer.

Example 1:		Example 2:				
$12x^2 - x - 6$			$3x^2 - 11x + 10$			
ac = -72, b = -1			ac = 30			
$mn = -72 = -9 \cdot 8$ m + n = -1 = -9 + 8		$30 = -5 \cdot -6$				
	4 <i>x</i> ↑	-3 ∗ ↑			3 <i>x</i> ↑	—5 * ↑
$3x \leftarrow$	$12x^{2}$	-9x		<i>x</i> ←	$3x^2$	-5x
+2 ∗←	8 <i>x</i>	-6		-2 ∗←	-6x	10
(4x - 3)(3x + 2)		(3x-5)(x-2)				

* Note we only pulled out a negative if the value in box *mx* or *nx* was negative.