Strategies for Factoring Special Polynomials:

UVU Math Lab

- 1. Always check 1st whether a GCF (Greatest Common Factor) can be factored out.
- 2. What is the form of the polynomial after checking for a GCF?

Name:	Form:	Approach:
Difference of Squares	$a^2 - b^2$	=(a+b)(a-b)
Sum of Cubes	$a^3 + b^3$	$= (a+b)(a^2-ab+b^2)$
Difference of Cubes	$a^3 - b^3$	$= (a-b)(a^2+ab+b^2)$
Quadratic Trinomial a = 1	$x^2 + bx + c$	i. Find two integers*, $m \& p$, whose product is c ($mp = c$), and whose sum is b ($m + p = b$). ii. Factor as =($x + m$)($x + p$).
Quadratic Trinomial $a \neq 1,0$	$ax^2 + bx + c$	 i. Find two integers, <i>m</i> & <i>p</i>, whose product is <i>ac</i> (<i>mp</i> = <i>ac</i>), and whose sum is <i>b</i> (<i>m</i> + <i>p</i> = <i>b</i>). ii. Rewrite the expression as <i>ax</i>² + <i>mx</i> + <i>px</i> + <i>c</i> & see below for 4-term polynomials.
Perfect Square Trinomial	$(a)^2 + 2ab + (b)^2$	$= (a + b)(a + b) = (a + b)^{2}$
Perfect Square Trinomial	$(a)^2 - 2ab + (b)^2$	$= (a - b)(a - b) = (a - b)^2$
Four Term Polynomial	4-terms or more	Use grouping* to factor and rewrite the expressions as the product of two binomials.

- 3. Has the factoring produced another polynomial which can be further factored, such as $a^2 b^2 = (a + b)(a b)$?
- 4. Polynomials that cannot be factored are called **prime**.

*See back for examples.

Finding Pairs of Factors:

Given $ax^2 + bx + c$, find *m* and *n* so that mn = ac and m + n = b.

For example, given $12x^2 - x - 6$, find *m* and *n* so that $mn = 12 \cdot -6 = -72$ and m + n = -1

Make a t-table and list all possible pairs of factors of *ac* on one side and check if their sum is *b* on the other side:

Product: $ac = -72 = mn$	Sum: $b = -1 = m + n$
$1 \cdot -72$ $2 \cdot -36$ $3 \cdot -24$ $4 \cdot -18$ (5 is not a factor of -72) $6 \cdot -12$ (7 is not a factor of -72) $8 \cdot -9$	1 + (-72) = -71 2 + (-36) = -34 3 + (-24) = -21 4 + (-18) = -14 6 + (-12) = -6 8 + (-9) = -1

Factoring Four Term Polynomials Using Grouping:

 $3x^{2} - 5x - 6x + 10$ 1. Group pairs of terms with common factors. 2. Factor out the GCF from each grouping. 3. Factor out the new GCF which will be the binomial in parentheses & rewrite as the $3x^{2} - 5x - 6x + 10$ $= (3x^{2} - 5x) + (-6x + 10)$ = x(3x - 5) - 2(3x - 5) = (3x - 5)(x - 2)

product of two binomials.