
Factoring Special Polynomials:

UVU Math Lab

Factoring Special Polynomials:

UVU Math Lab

Finding Pairs of Factors:

Given $ax^2 + bx + c$, find *m* and *n* so that mn = ac and m + n = b.

For example, given $12x^2 - x - 6$, find *m* and *n* so that $mn = 12 \cdot -6 = -72$ and m + n = -1

Make a t-table and list all possible pairs of factors of *ac* on one side and check if their sum is *b* on the other side:

Product: $ac = -72 = mn$	Sum: $b = -1 = m + n$
$1 \cdot -72$ $2 \cdot -36$ $3 \cdot -24$ $4 \cdot -18$ (5 is not a factor of -72) $6 \cdot -12$ (7 is not a factor of -72) $8 \cdot -9$	1 + (-72) = -71 2 + (-36) = -34 3 + (-24) = -21 4 + (-18) = -14 6 + (-12) = -6 8 + (-9) = -1

Factoring Four Term Polynomials Using Grouping:

 $3x^2 - 5x - 6x + 10$

 $=(3x^2-5x)+(-6x+10)$

= x(3x-5) - 2(3x-5)

=(3x-5)(x-2)

- 1. Group pairs of terms with common factors.
- 2. Factor out the GCF from each grouping.
- 3. Factor out the new GCF which will be the binomial in parentheses & rewrite as the product of two binomials.