

(version: February 17, 2022)

CURRICULUM VITAE

Larry Zeng, Ph.D.

1. PERSONAL DATA

Name: Gengsheng Lawrence Zeng
Citizenship: The United States of America
Work Address : UVU, Mail Stop 129, 800 West University Parkway, Orem, UT 84058
Telephone #: Work - (801) 863-8306
Fax #: (817) 582-3918
E-mail: larry.zeng@uvu.edu, larryzeng@live.com, larry.zeng@hsc.utah.edu
Website: <http://zenglarry.atwebpages.com/>
Open Researcher and Contributor ID (ORCID) : 0000000307906043
orcid.org/0000-0003-0790-6043

2. EDUCATION

B.S., Applied Mathematics
Xidian University
Xi'an, China
Thesis: "Searching for Self-dual Sequences" 《自互反序列与自互补序列寻觅》

M.S., Electrical Engineering
University of New Mexico
Albuquerque, New Mexico

Ph.D., Electrical Engineering
University of New Mexico
Albuquerque, New Mexico
Dissertation: "A New Adaptive IIR Algorithm and the Convergence Factors for Digital and Analog Adaptive Filters"

3. PROFESSIONAL EXPERIENCE

July 2020 – present

Associate Professor, Department of Computer Science, Utah Valley University, 800 West University Parkway, Orem, UT, 84058

August 2019 – June 2020

Visiting Scholar, Department of Engineering, Utah Valley University, 800 West University Parkway, Orem, UT, 84058

July 2019 – August 2019

Research Staff, College of Engineering, Applied Sciences and Technology, Weber State University, 1447 Edvalson St., Ogden, UT 84408

March 2014 – June 2019

Tenured Associate Professor, Department of Engineering, Weber State University,
1447 Edvalson St., Dept. 1803, Odgen, UT 84408

August 2013 – March 2014

Assistant Professor, Department of Engineering, Weber State University, 1447
Edvalson St., Dept. 1803, Odgen, UT 84408

August 2013 – present

Adjunct Professor, Department of Radiology and Imaging Sciences, University of
Utah, CAMT, 729 Arapeen Drive, Salt Lake City, UT 84108-1218, phone: (801) 581-
3918, fax: (801) 585-3592

July 2005 – August 2013

Tenured Professor, Department of Radiology and Imaging Sciences, University of
Utah, CAMT, 729 Arapeen Drive, Salt Lake City, UT 84108-1218

July 2008 – 2017

Adjunct Professor, Department of Bioengineering, University of Utah, 50 S. Central
Campus Dr., Salt Lake City, UT 84112-9206

July 2008 – 2017

Adjunct Professor, Department of Electrical and Computer Engineering, University of
Utah, 50 S. Central Campus Dr., Salt Lake City, UT 84112-9206

Jan 2013 – Dec 2013

Adjunct Professor, School of Electrical & Electronic Engineering at Yonsei
University, Seoul, South Korea

September 2003 – June 2008

Adjunct Associate Professor, Department of Bioengineering, University of Utah, 50 S.
Central Campus Dr., Salt Lake City, UT 84112-9206

July 2001 – June 2005

Tenured Associate Professor, Department of Radiology and Imaging Sciences,
University of Utah, CAMT, 729 Arapeen Drive, Salt Lake City, UT 84108-1218

July 1999 – June 2001

Associate Professor, Department of Radiology and Imaging Sciences, University of
Utah, CAMT, 729 Arapeen Drive, Salt Lake City, UT 84108-1218

March 2000 – June 2008

Research Associate Professor, Department of Electrical and Computer Engineering,
University of Utah, 50 S. Central Campus Dr., Salt Lake City, UT 84112-9206

Dec. 1994 – June 1999

Assistant Professor, Department of Radiology and Imaging Sciences, University of
Utah, CAMT, 729 Arapeen Drive, Salt Lake City, UT 84108-1218

July 1992 – Dec. 1994

Research Assistant Professor, Department of Radiology and Imaging Sciences,
University of Utah Medical Center, Salt Lake City, UT 84132

Dec. 1991 – June 1992

Limited Term Instructor, Department of Radiology and Imaging Sciences, University
of Utah Medical Center, Salt Lake City, UT 84132

Jan. 1989 – Dec. 1991

Post doctoral Fellow (Research Associate), Department of Radiology and Imaging Sciences, University of Utah Medical Center, Salt Lake City, UT 84132

Jan. 1986 – Dec. 1988

Teaching Assistant, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131

Feb. 1982 – Dec. 1984

Instructor, Department of Applied Mathematics, Northwest Telecommunication Engineering Institute, Xi'an, China

4. EXTERNAL SUPPORT

NIH R15EB024283

Principal Investigator: G. L. Zeng

“Fast and robust low-dose x-ray CT image reconstruction”

\$273,846 total cost, May 1, 2018 - April 30, 2022

American Heart Association 18AJML34280074

Principal Investigator: G. L. Zeng

“Sub-second image reconstruction for real-time cardiac MRI via machine-learning with complex weights”

\$200,000 total cost, July 1, 2018 - June 30, 2020

NIH 1R01HL108350 - 01

Principal Investigator: G. L. Zeng

“Segmented slant hole stationary cardiac SPECT”

\$1,409,860 total cost, January 15, 2012 - December 31, 2017 (NCE)

NIH 5R21 EB006830-01

Principal Investigator: G. L. Zeng

“Small animal SPECT using a skew-slit collimator camera”

\$412,500 total cost, April 1, 2008 — Mar. 31, 2010

NIH R01 EB00121 (Subcontract from Lawrence Berkeley National Labs)

Principal Investigator: G. L. Zeng

“Improved cardiac SPECT with convergent hole collimators”

\$784,326 total cost, January 1, 2008 - December 31, 2011

Toshiba Medical Research Institute USA

Principal Investigator: G. L. Zeng

“Development of advanced FBP algorithms for low-dose CT”

\$50,000 total cost, March 1, 2012 - February 28, 2013

\$50,000 total cost, March 1, 2013 - February 28, 2014

Siemens Clinical Solutions

Principal Investigator: G. L. Zeng

“Static cardiac SPECT system”

\$32,000 total cost, January 1, 2009 - December 31, 2009

Benning Trust Fund

Principal Investigator: G. L. Zeng

“Non-iterative nonstationary unblurring”

\$20,000 total cost, Oct., 2008 — Oct., 2009

Siemens Pre-Clinical

Principal Investigator: G. L. Zeng

“Simulation and characterization of Siemens Invenon SPECT detector”

\$40,100 total cost, January 1, 2009 - December 31, 2009

NIH 1R33 EB001489-01A2

Principal Investigator: G. L. Zeng

“Image reconstruction with solid state SPECT”

\$614,148 total cost, Mar. 17, 2003 — Feb. 28, 2007

NIH 1R21 EB003298-01

Principal Investigator: G. L. Zeng

“Breast cancer imaging using a solid state SPECT camera”

\$448,500 total cost, Sept. 1, 2003 — Aug. 31, 2006

NIH R21 CA100181-01

Principal Investigator: G. L. Zeng

“Radio-Immunotherapy (RIT) Planning Using SPECT”

\$373,750 total cost, Sept. 1, 2003 — Aug. 31, 2006

NIH R01 EB00121 (Subcontract from Lawrence Berkeley National Labs)

Principal Investigator: G. L. Zeng

“Improved cardiac SPECT with convergent hole collimators”

\$336,500 total cost, July 1, 2002 - June 30, 2006

Benning Trust Fund

Principal Investigator: G. L. Zeng

“High Sensitivity Super Resolution SPECT”

\$20,000 total cost, Oct., 2006 — Oct., 2007

Benning Trust Fund

Principal Investigator: G. L. Zeng

“Small Animal SPECT Using 2 Skew-Slit Collimator”

\$10,000 total cost, Oct., 2005 — Oct., 2006

Benning Trust Fund

Principal Investigator: G. L. Zeng

“Small Animal SPECT with Spinning-Slit Collimator”

\$15,000 total cost, Jan. 1, 2005 — Dec 31, 2005

Philips Medical Systems

Principal Investigator: G. L. Zeng

“Solstice Imaging System”

\$25,000 per year, Oct. 1, 1999 — Dec. 31, 2002

\$25,000 Jan. 1, 2003 — Jun. 30, 2003

Benning Trust Fund

Principal Investigator: G. L. Zeng

“Preprocessing”

\$2,000 total cost, Jan. 1, 2003 — Dec 31, 2003

Benning Trust Fund

Principal Investigator: G. L. Zeng

“Whole-body SPECT for therapy planning”

\$20,000 total cost, Jan. 1, 2002 — Dec 31, 2002

NIH First Award (1R29HL/CA51462-01A1)

Principal Investigator: G. L. Zeng

“Implementation of cone-beam algorithms for clinical SPECT”

\$350,000 total cost, July 1, 1994 — June 30, 1999

The Whitaker Foundation

Principal Investigator: G. L. Zeng

“Cone beam reconstruction algorithms for single photon emission computed tomography”

\$180,000 total cost, December 1, 1991 — November 30, 1994

Benning Trust Fund

Principal Investigator: G. L. Zeng

“An accurate projector model for iterative algorithms”

\$20,000 total cost, Aug. 1, 1996 — July 31, 1997

5. HONOR SOCIETIES

Eta Kappa Nu (Electrical Engineering Society)

Tau Beta Pi (Engineering Society)

6. PROFESSIONAL ORGANIZATIONS

Fellow (since January 1, 2011), IEEE (The Institute of Electrical and Electronic Engineers),

Citation: “for contributions to instrumentation and image reconstruction algorithms in single photon emission computed tomography”

7. FELLOWSHIPS

- a. Chinese Government Fellowship - 1985
- b. Teaching Assistant - 1986-1987
- c. Research Assistant - 1988

8. REVIEWER

IEEE Transactions on Medical Imaging

IEEE Transactions on Nuclear Science

IEEE Signal Processing Letters

Medical Physics

Journal of Nuclear Medicine

Physics in Medicine and Biology

Associate Editor of Medical Physics

Belgium Research Foundation - Flanders (Fonds Wetenschappelijk Onderzoek - Vlaanderen, FWO)

9. PUBLICATIONS

A. Refereed Publications

1. Karni S and Zeng GL: An adaptive IIR algorithm with unimodal performance surfaces. *IEEE Trans. on Acoustics, speech, and Signal Processing*, vol. ASSP-36, Feb. 1988, pp. 286-287.
2. Karni S and Zeng GL: A new convergence factor for adaptive filters. *IEEE Trans. on Circuits and Systems*, vol. CAS-36, July 1989, pp. 1011-1012.
3. Karni S and Zeng GL: The analysis of the continuous-time LMS algorithm. *IEEE Trans. on Acoustics, speech, and Signal Processing*, vol. ASSP-37, April 1989, pp. 595-597.
4. Zeng GL and Ahmed N: A block coding technique for encoding sparse binary patterns. *IEEE Trans. on Acoustics, speech, and Signal Processing*, vol. ASSP-37, May 1989, pp. 778-780.

5. Karni S and Zeng GL: Comments on “Adaptive algorithms with an automatic gain control feature”. *IEEE Trans. on Circuits and Systems*, vol. CAS-37, no. 7, July 1990, pp. 974-975.
6. Gullberg GT, Zeng GL, Tsui BMW and Hagius JT: An iterative reconstruction algorithm for single photon emission computed tomography with cone beam geometry. *Int. J. of Imag. Sys. & Tech.* vol. 1, 1989, pp. 169-186.
7. Zeng GL and Gullberg GT: A study of reconstruction artifacts in cone beam tomography using filtered backprojection and iterative EM algorithms. *IEEE Trans. Nucl. Sci.* vol. 37, no. 2, April 1990, pp. 759-767.
8. Gullberg GT, Christian PE, Zeng GL and Datz FL: Cone beam tomography of the heart using single-photon emission-computed tomography. *Invest. Rad.*, vol. 26, no. 7, July 1991, pp. 681-688. PMID: 1885277
9. Zeng GL, Gullberg GT, Tsui BMW and Terry JA: Three-dimensional iterative reconstruction algorithms with attenuation and geometric point response correction. *IEEE Trans. Nucl. Sci.*, vol. 38, no. 2, April 1991, pp. 693-702.
10. Zeng GL and Gullberg GT: A cone-beam tomography algorithm for orthogonal circle-and-line orbit, *Phy. Med. Biol.*, vol. 37, no. 3, March 1992, pp. 563-577. PMID: 1565691
11. Gullberg GT and Zeng GL: A cone beam filtered backprojection reconstruction algorithm for cardiac single photon emission computed tomography. *IEEE Trans. Med. Imag.*, vol. 11, no. 1, March 1992, pp. 91-101. PMID: 18218361
12. Gullberg GT, Zeng GL, Christian PE, Datz FL, Tung CH, and Morgan HT: Review of convergent beam tomography in single photon emission computed tomography. *Phy. Med. Biol.*, vol. 37, no. 3, March 1992, pp. 507-534. PMID: 1565688
13. Zeng GL and Gullberg GT: Frequency domain correction of the three-dimensional geometric point response function in SPECT imaging. *IEEE Trans. Nucl. Sci.* vol. 39, no. 5, October 1992, pp. 1444-1453.
14. Tung CH, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT: Nonuniform attenuation correction using simultaneous transmission and emission converging tomography. *IEEE Trans. Nucl. Sci.*, vol. 39, no. 4, August 1992, pp. 1134-1143.
15. Zeng GL, Gullberg GT, Jaszczak RJ, and Li J: Fan-beam reconstruction algorithm for a spatially varying focal length collimator. *IEEE Trans Med. Imag.* September 1993, pp. 575- 582. PMID: 18218451
16. Weng Y, Zeng GL and Gullberg GT: A reconstruction algorithm for helical cone-beam SPECT. *IEEE Trans. Nucl. Sci.* vol. 40, no. 4, August 1993, pp. 1092-1101.
17. Gullberg GT and Zeng GL: An elliptical orbit backprojection filtering algorithm for SPECT. *IEEE Trans. Nucl. Sci.* vol. 40, no. 4, August 1993, pp. 1102-1106.
18. Zeng GL, Clack R and Gullberg GT: Implementation of Tuy’s cone-beam inversion formula. *Phys. Med. Biol.*, vol. 39, March 1994, pp. 493-507. PMID: 15551594
19. Datz FL, Gullberg GT, Zeng GL, Tung CH, Christian PE, Welch A, and Clack R: Application of convergent-beam collimation and simultaneous transmission emission

tomography to cardiac single-photon emission computed tomography, *Seminars in Nuclear Medicine*, vol. XXIV, no. 1, January 1994, pp. 17-37. PMID: 8122126

20. Zeng GL and Gullberg GT: A backprojection filtering algorithm for a spatially varying focal length collimator. *IEEE Trans Med. Imag.* vol. 13, no. 3, Sept. 1994, pp. 549-556. PMID: 18218530
21. Zeng GL, Hsieh YL, and Gullberg GT: A rotating and warping projector-backprojector pair for fan-beam and cone-beam iterative algorithms. *IEEE Trans. Nucl. Sci.* vol. 41, no. 6, Dec. 1994, pp. 2807-2811.
22. Gullberg GT and Zeng GL: A reconstruction algorithm using singular value decomposition of a discrete representation of the exponential Radon transform using natural pixels. *IEEE Trans. Nucl. Sci.* vol. 41, no. 6, Dec. 1994, pp. 2812-2819
23. Gullberg GT and Zeng GL: Backprojection filtering for variable orbit fan-beam tomography. *IEEE Trans. Nucl. Sci.* vol. 42, no. 4, Aug. 1995, pp. 1257-1266
24. Zeng GL, Gullberg GT and Huesman RH: Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements. *IEEE Trans. Nucl. Sci.* vol. 42, no. 6, Dec. 1995, pp. 2339-2346
25. Gullberg GT, Hsieh Y-L, and Zeng GL: An SVD algorithm using a natural pixel representation of the attenuated Radon transform. *IEEE Trans. Nucl. Sci.* vol. 43, no. 1, Feb. 1996, pp. 295-303.
26. Hsieh Y-L, Gullberg GT, Zeng GL, and Huesman RH: Image reconstruction using a generalized natural pixel basis. *IEEE Trans. Nucl. Sci.* Aug. 1996, pp. 2306-2319.
27. Zeng GL, Gullberg GT, and Foresti SA: Eigen analysis of cone-beam scanning geometries. in Computational Imaging and Vision Series, *Three-Dimensional Imaging Reconstruction in Radiology and Nuclear Medicine*. Eds: P. Grangeat and J.-L. Amans, Kluwer Academic Publishers. 1996, pp. 75-86.
28. Weng Y, Zeng GL, and Gullberg GT: Filtered backprojection algorithms for attenuated parallel and cone-beam projections sampled on a sphere. in Computational Imaging and Vision Series, *Three-Dimensional Imaging Reconstruction in Radiology and Nuclear Medicine*. Eds: P. Grangeat and J.-L. Amans, Kluwer Academic Publishers. 1996, pp. 19-34.
29. Zeng GL, Weng Y, and Gullberg GT: Iterative reconstruction with attenuation compensation from cone-beam projections acquired via non-planar orbits. *IEEE Trans. Nucl. Sci.* vol. 44, no. 1, Feb. 1997, pp. 98-106.
30. Zeng GL and Gullberg GT: An SVD study of truncated transmission data in SPECT. *IEEE Trans. Nucl. Sci.* vol. 44, no. 1, Feb. 1997, pp. 107-111.
31. Wan X, Gullberg GT, Parker DL, and Zeng GL: Reduction of geometric distortion in echo-planar imaging using a multi-reference scan. *Magnetic Resonance in Medicine*, vol. 37, June 1997, pp. 932-942. PMID: 9178246
32. Weng Y, Zeng GL, and Gullberg GT: Analytical inversion formula for uniformly attenuated fan-beam projections. *IEEE Trans. Nucl. Sci.* vol. 44, no. 2, April 1997, pp. 243- 249.

33. Zeng GL, Gullberg GT, Christian PE, Bai C, Trisjono F, Tanner JW, Di Bella E: VR., and Morgan HT: Iterative reconstruction of Fluorine-18 SPECT using geometric point response correction. *J. Nucl. Med.* vol. 39, no. 1, 1998, pp. 124-130. PMID: 9443751

34. Basko R, Zeng GL, and Gullberg GT: Analytical reconstruction formula for one-dimensional Compton camera. *IEEE Trans. Nucl. Sci.* vol. 44, no. 3, June 1997, pp. 1342-1346.

35. Zeng GL and Gullberg GT: Iterative and analytical reconstruction algorithms for varying focal-length cone-beam projections. *Phys. Med. Biol.* vol. 43, no. 4, 1998, pp. 811-821. PMID: 9572506

36. Basko R, Zeng GL and Gullberg GT: Application of spherical harmonics to image reconstruction for Compton camera. *Phys. Med. Biol.* vol. 43, no. 4, 1998, pp. 887-894. PMID: 9572512

37. Huesman RH, Reutter RW, Zeng GL, and Gullberg GT: Kinetic parameter estimation from SPECT cone-beam projection measurements. *Phys. Med. Biol.* vol. 43, no. 4, 1998, pp. 973- 982. PMID: 9572520

38. Hsieh YL, Zeng GL, and Gullberg GT: Projection space image reconstruction using strip functions to calculate pixels more “natural” for modeling the geometric response of the SPECT collimator. *IEEE Trans. Med. Imag.* vol. 17, no. 1, 1998, pp. 24-44. PMID: 9617905

39. Gullberg GT, Morgan HT, Zeng GL, Tung C-H, Christian PE, Maniawski PJ, Hsieh Y-L, and Datz FL: The design and performance of a simultaneous transmission and emission tomography system. *IEEE Trans. Nucl. Sci.* vol. 45, no. 3, 1998, pp. 1676-1698.

40. Bai C, Zeng GL, Gullberg GT, DiFilippo F, and Miller S: Slab-by-slab blurring model for geometric point response and attenuation correction using iterative reconstruction algorithms. *IEEE Trans. Nucl. Sci.* vol. 45, no. 4, 1998, pp. 2168-2173.

41. Panin VY, Zeng GL, and Gullberg GT: Reconstructions of truncated projections using an optimal basis expansion derived from the cross correlation of a “knowledge set” of *a priori* cross sections. *IEEE Trans. Nucl. Sci.* vol. 45, no. 4, 1998, pp. 2119-2125.

42. You J, Liang Z, and Zeng GL: A unified reconstruction framework for both parallel-beam and variable focal-length fan-beam collimators by a Cormack-type inversion of exponential Radon transform. *IEEE Trans. Med. Imag.* vol. 18, no. 1, 1999, pp. 59-65. PMID: 10193697

43. Zeng GL, Bai C, and Gullberg GT: A projector/backprojector with slice-to-slice blurring for efficient three-dimensional scatter modeling, *IEEE Trans. Med. Imag.*, vol. 18, no. 8, 1999, pp. 722- 732. PMID: 10534054

44. Zeng GL and Gullberg GT: Helical SPECT using axially truncated data. *IEEE Trans. Nucl. Sci.* vol. 46, no. 6, 1999, pp. 2111-2118.

45. Gullberg GT, Roy DG, Zeng GL, Alexander AL, and Parker DL, Tensor tomography, *IEEE Trans. Nucl. Sci.* vol. 46, no. 4, 1999, pp. 991-1000.

46. Bai C, Zeng GL, Kadrmas DJ, and Gullberg GT: A study of apparent apical defects in attenuation corrected cardiac SPECT. *IEEE Trans. Nucl. Sci.*, vol. 46, no. 6, 1999, pp. 2104-2110.

[47.](#) Panin VY, Zeng GL, and Gullberg GT: Total variation regulated EM algorithm. *IEEE Trans. Nucl. Sci.*, vol. 46, no. 6, 1999, pp. 2202-2210.

[48.](#) Bai C, Zeng GL, and Gullberg GT: A slice-by-slice blurring model and kernel evaluation using Klein-Nishina formula for 3D scatter compensation in parallel and converging beam SPECT, *Phys. Med. Biol.* vol. 45, no. 5, 2000, pp. 1275-1307. PMID: 10843105

[49.](#) Panin VY, Zeng GL, and Gullberg GT: Regularization parameter selection for Bayesian reconstruction of attenuation maps. *IEEE Trans. Nucl. Sci.* vol. 47, no. 4, 2000, pp. 1625-1633.

[50.](#) Zeng GL and Gullberg GT: Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. *IEEE Trans. Med. Imag.* vol. 19, no. 5, 2000, pp. 548-555. PMID: 11021698, PMCID: PMC5297459

[51.](#) Laurette I, Zeng GL, Welch A, Christian PE, and Gullberg GT: A three-dimensional ray-driven scatter and geometric response correction technique for SPECT in inhomogeneous media. *Phys. Med. Biol.*, vol. 45, 2000, pp. 3459-3480. PMID: 11098917

[52.](#) Bai, C, Zeng GL, and Gullberg GT: The modeling of multiple order Compton scatter in SPECT, *IEEE Trans. Nucl. Sci.*, vol. 48, no. 1, 2001, pp. 38-42.

[53.](#) Panin VY, Zeng GL, and Gullberg GT: A method of attenuation map and emission activity reconstructions from emission data, *IEEE Trans. Nucl. Sci.*, vol. 48, no. 1, 2001, pp. 131- 138.

[54.](#) Zeng GL: Image reconstruction — a tutorial, *Frontiers in Nuclear Medicine Technology*, in Special Issue of *Computerized Medical Imaging and Graphics*. vol. 25, 2001, pp. 97-103. PMID: 11137785

[55.](#) Zeng GL, Gullberg GT, Christian PE, Gagnon D, and Tung CH: Asymmetric cone-beam transmission tomography. *IEEE Trans. Nucl. Sci.*, vol. 48, no. 1, 2001, pp. 117-124.

[56.](#) Gullberg GT, Defrise M, Panin VY, and Zeng GL: Efficient cardiac diffusion tensor MRI by three-dimensional reconstruction of solenoidal tensor fields. *Magnetic Resonance Imaging*. vol. 19, 2001, pp. 233-256. PMID: 11358662

[57.](#) Taguchi K, Zeng GL, and Gullberg GT: Cone-beam image reconstruction using spherical harmonics. *Phys. Med. Biol.*, vol. 46, no. 6, 2001, pp. N127-N138. PMID: 11419632

[58.](#) Zeng GL, Gullberg GT, Christian PE, and Gagnon D: Cone-beam iterative reconstruction of a segment of a long object, *IEEE Trans. Nucl. Sci.*, vol. 49, no. 1, 2002, pp. 37-41.

[59.](#) Panin VY, Zeng GL, Defrise M, and Gullberg GT: Diffusion tensor MR imaging of principal directions: a tensor tomography approach, *Phys. Med. Biol.* vol. 47, no. 15, 2002, pp. 2737-2757. PMID: 12200936

[60.](#) Zeng GL and Gullberg GT: A channelized Hotelling trace collimator design method based on reconstruction rather than projections. *IEEE Trans. Nucl. Sci.* vol. 49, Oct. 2002, pp. 2155-2158.

[61.](#) Zeng GL, Gagnon D, Matthews C, Kolthammer J, Radachy J, and Hawkins W: Image reconstruction algorithm for rotating slat collimator, *Med. Phys.* vol. 29, no. 7, 2002, pp. 1406-1412. PMID: 12148720

62. Panin VY, Zeng GL, and Gullberg GT: Regularized iterative reconstruction in tensor tomography using gradient constraints. *IEEE Nucl. Sci.* vol. 49, Oct. 2002, pp. 2387-2393.

63. Zeng GL, Gagnon D, Natterer F, Wang W, Wrinkler M, and Hawkins W: Local tomography property of residual minimization reconstruction with planar integral data. *IEEE Trans. Nucl. Sci.* vol. 50, no. 5., pt. 2, 2003, pp. 1590-1594.

64. Zeng GL and Gagnon D: Image reconstruction algorithm for a SPECT system with a convergent rotating slat collimator. *IEEE Trans. Nucl. Sci.* vol. 51, no. 1, 2004, pp. 142-148.

65. Zeng GL and Gullberg GT: Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics. *Phys. Med. Biol.*, vol. 49, pp. 2239-2256, 2004. PMID: 15248575

66. Zeng GL: Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography. *IEEE Trans. Med. Imag.*, vol. 23, pp. 690-695, 2004. PMID: 15191143

67. Zeng GL and Gagnon D: CdZnTe strip detector SPECT imaging with a slit collimator. *Phys. Med. Biol.*, vol. 49, pp. 2257-2271, 2004.

68. Feng B, King MA, Zeng GL, Pretorius PH, Bruyant PP, Beach RD, Boening G, Jackewicz G, Cochhoff S, and Gagnon D: The estimation of attenuation maps for cardiac-SPECT using cone-beam imaging of high-energy photons through parallel-hole collimators. *IEEE Trans. Nucl. Sci.*, vol. 51, no. 5, pp. 2699-2704, 2004.

69. Zeng GL and Gagnon D: Image reconstruction algorithm for a spinning strip CZT SPECT camera with a parallel slat collimator and small pixels. *Med. Phys.*, vol. 31, pp. 3461-3473, 2004. PMID: 15651629

70. Zeng GL and Gagnon D: CdZnTe strip detector SPECT imaging with a slit collimator. *Phys. Med. Biol.*, vol. 49, pp. 2257-2271, 2004.

71. Gullberg GT and Zeng GL: Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation. *IEEE Trans. Nucl. Sci.*, vol. 52, no. 1, 2005, pp. 143-153.

72. You J, Zeng GL, and Liang Z: FBP algorithms for attenuated fan-beam projections. *Inverse Problems*, vol. 21, pp. 1179-1192, 2005, PMID: 16570111

73. Tang Q, Zeng GL, and Gullberg GT: Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction. *Phys. Med. Biol.*, vol. 50, pp. 3153-3170, 2005. PMID: 15972987

74. Huang Q, Zeng GL, You J, and Gullberg GT: An FDK-like cone-beam SPECT reconstruction algorithm for non-uniform attenuated projections acquired using a circular trajectory. *Phys. Med. Biol.*, vol. 50, pp. 2329-2339, 2005. PMID: 15876670

75. Hwang DS and Zeng GL: A new simple iterative reconstruction algorithm for SPECT transmission measurement. *Med. Phys.*, vol. 32, no. 7, pp. 2312-2319, 2005. PMID: 16121587

76. Earl RD, Zeng GL, and Zhang B: Optimizing the acquisition time profile for a planar integral measurement system with a spinning slat collimator, *Med. Phys.*, vol. 32, no. 9, pp. 2793-2798, 2005. PMID: 16266093

77. Tang Q, Zeng GL, Wu J, and Gullberg GT: Exact fan-beam and 4π -acquisition cone-beam SPECT algorithms with uniform attenuation correction. *Med. Phys.*, vol. 32, no. 11, pp. 3440-3447, 2005. PMID: 16372416

78. Hwang DS and Zeng GL: Reduction of noise amplification in SPECT using smaller detector bin size. *IEEE Trans. Nucl. Sci.*, vol. 52, no. 5, pp. 1417-1427, 2005.

79. Hwang DS and Zeng GL: Convergence study of an accelerated ML-EM algorithm using bigger step size. *Phys. Med. Biol.*, vol. 51, pp. 237-252, 2006. PMID: 16394336

80. Huang Q and Zeng GL: An analytical algorithm for skew-slit imaging geometry with non-uniform attenuation correction. *Med. Phys.*, vol. 33, no. 4, pp. 997-1004, 2006. PMID: 16696476

81. You J and Zeng GL: Exact finite inverse Hilbert transforms. *Inverse Problems*, vol. 22, pp. L7-L10, 2006.

82. Feng B, Fessler JA, Pretorius PH, Beach RD, Zeng GL, and King MA: Evaluation of the ordered-subset transmission (OSTR) algorithm for transmission imaging on SPECT systems using with axially overlapping cone-beams. *IEEE Trans. Nucl. Sci.*, vol. 53, pp. 1221-1229, 2006.

83. Zhang B and Zeng GL: Study of noise propagation and the effects of insufficient numbers of projection angles and detector samplings for iterative reconstruction using planar-integral data. *Med. Phys.*, vol. 33, pp. 3124-3134, 2006. PMID: 17022204

84. Zeng GL: Detector blurring and detector sensitivity compensation for a spinning slat collimator. *IEEE Trans. Nucl. Sci.*, vol. 53, pp. 2628-2634, 2006.

85. Bal G, Di Bella VR, Gullberg GT, and Zeng GL: Cardiac imaging using a four-segment slant-hole collimator. *IEEE Trans. Nucl. Sci.*, vol. 53, pp. 2619-2627, 2006.

86. Huang Q, Zeng GL, and Wu J: An alternative proof of Bukhgeim and Kazantsev's inversion formula for attenuated fan-beam projections. *Med. Phys.*, vol. 33, pp. 3983-3987, 2006. PMID: 17153376

87. Zhang B and Zeng GL: An immediate after-backprojection filtering method with blob-shaped window functions for voxel-based iterative reconstruction. *Phys. Med. Biol.*, vol. 51, pp. 5825-5842, 2006. PMID: 17068367

88. Tang Q, Zeng GL, and Huang Q: An analytical algorithm for skew-slit collimator SPECT with uniform attenuation correction. *Phys. Med. Biol.*, vol. 51, pp. 6199-6211, 2006. PMID: 17110780, PMCID: PMC5314945

89. Huang Q, Zeng GL, and Gullberg GT: An analytical inversion of the 180° exponential Radon transform with a numerically generated kernel. *Int. J. Image and Graphics*, vol. 7, no. 1, pp. 71-85, 2007.

90. You J and Zeng GL: Hilbert transform based FBP algorithm for fan-beam CT full and partial scans. *IEEE Trans. Med. Imag.*, vol. 26, no. 2, pp. 190-199, 2007. PMID: 17304733

91. Zhang B and Zeng GL: Two-dimensional iterative region-of-interest (ROI) reconstruction from truncated projection data. *Med. Phys.*, vol. 34, pp. 935-944, 2007. PMID: 17441239

92. Zeng GL and Christian PE: Easy method of patient positioning for convergent beam cardiac SPECT. *J. Nucl. Med. Tech.*, vol. 35, pp. 131-134, 2007. PMID: 17702905

93. Zeng GL: Image reconstruction via the finite Hilbert transform of the derivative of the backprojection. *Med. Phys.*, vol. 34, pp. 2837-2843, 2007. PMID: 17821991

94. Zeng GL, You J, Huang Q, and Gullberg GT: Two finite inverse Hilbert transform formulae for local tomography. *Int. J. Imag. Syst. Tech.*, vol. 17, pp. 219-223, 2007.

95. Tang Q, Zeng GL, and Gullberg GT: A Fourier reconstruction algorithm with constant attenuation compensation using 180° acquisition data for SPECT. *Phys. Med. Biol.*, vol. 52, pp. 6165-6179, 2007. PMID: 17921578, PMCID: PMC5292233

96. Zeng GL: Uniform attenuation correction using frequency-distance principle. *Med. Phys.*, vol. 34, pp. 4281-4284, 2007. PMID: 18072492, PMCID: PMC5300737

97. Zeng GL: Pinhole SPECT vs. cone-beam SPECT. *Medical Biometrics* (D. Zhang, Ed.) *Lecture Notes in Computer Science* 4901, pp. 240-247, 2007.

98. Zeng GL: A skew-slit collimator for small-animal SPECT. *Journal of Nuclear Medicine Technology*, vol. 36, pp. 207-212, 2008. PMCID: PMC2678834

99. Jorgensen AK and Zeng GL: SVD-based evaluation of multiplexing in multi-pinhole SPECT systems. *International Journal of Biomedical Imaging*, vol. 2008, Article ID 769195, 2008, PMID: 19125178, PMCID: PMC2605944

100. Yan Y and Zeng GL: Scatter and blurring compensation in inhomogeneous media using a post-processing method. *International Journal of Biomedical Imaging*, vol. 2008, Article ID 806705, 11 pages, 2008, PMID: 19277117, PMCID: PMC2650963

101. Huang Q, You J, Zeng GL, and Gullberg GT: Reconstruction from uniformly attenuated SPECT projection data using the DBH method. *IEEE Trans. Med. Imag.*, vol. 28, pp. 17-29, 2009, PMID: 19116185, PMCID: PMC2871258

102. Piatt JA and Zeng GL: A backprojection-based parameter estimation technique for skew-slit collimation. *IEEE Trans. Nucl. Sci.*, vol. 56, pp. 687-693, 2009. PMCID: PMC5315086

103. Zeng GL and Allred RJ: Partitioned image filtering for the reduction of the Gibbs phenomenon. *J. Nucl. Med. Tech.*, vol. 37, pp. 96-100, 2009, PMID: 19447854, PMCID: PMC5292232

104. Zeng GL and Gullberg GT: Exact emission SPECT reconstruction with truncated transmission data. *Phys. Med. Biol.*, vol. 54, pp. 3329-3340, 2009, PMID: 19430109, PMCID: PMC2871257

105. Zeng GL and Stevens AM: Multidivergent-beam stationary cardiac SPECT. *Med. Phys.*, vol. 36, pp. 2860-2869, 2009, PMID: 19673185, PMCID: PMC2832036

106. Zeng GL: Compensating for non-stationary blurring by further blurring and deconvolution. *International Journal of Imaging Systems and Technology*, vol. 19, 221-226, 2009, PMID: 19890451, PMCID: PMC2772153

107. Yan Y and Zeng GL: A post-processing method for scatter and collimator blurring compensation in SPECT. *J. Nucl. Med. Tech.*, vol. 37, pp. 83-90, 2009, PMID: 19447851, PMCID: PMC5328504

108. Yan Y and Zeng GL: Attenuation map estimation with SPECT emission data only. *Int. J. Imag. Syst. Tech.* vol. 19, pp. 271-276, 2009. PMID: 20148196, PMCID: PMC2818122

109. Zeng GL and Gullberg GT: Exact iterative reconstruction for the interior problem. *Phys. Med. Biol.* vol. 54, pp. 5805-5814, 2009. PMID: 19741279, PMCID: PMC3074952

110. Zhang B and Zeng GL: High-resolution versus high-sensitivity SPECT imaging with geometric blurring compensation for various parallel-hole collimation geometries. *IEEE Transactions on Information Technology in Biomedicine*. vol. 14, pp. 1121-1127, 2010. PMID: 20460211, PMCID: PMC5292234

111. Zeng GL and Gullberg GT: SPECT region of interest reconstruction with truncated transmission and emission data. *Med. Phys.* vol. 37, pp. 4627-4633, 2010, PMID: 20964181, PMCID: PMC2933253

112. Zeng GL, Gullberg GT and Kadrmas DJ: Closed-form kinetic parameter estimation solution to the truncated data problem. *Phys. Med. Biol.* vol. 55, pp. 7453-7468, 2010, PMID: 21098917, PMCID: PMC3023984

113. Zeng GL and Gullberg GT: Corrigendum (Exact iterative reconstruction for the interior problem). *Phys. Med. Biol.*, vol. 54, p. 7397, 2010, PMCID: PMC5327737

114. Moon SM, Craig Goodrich K, Rock Hadley J, Kim SE, Zeng GL, Morrell GR, McAlpine MA, Chronik BA, Parker DL: Super elliptical insert gradient coil with a field-modifying layer for breast imaging. *Magn Reson Med.*, vol. 65, pp. 863-872, 2011, PMID: 20939085, PMCID: PMC3021626

115. Hwang DS, Lee JW, and Zeng GL: SPECT reconstruction with sub-sinogram acquisitions. *Int. J. Imag. Syst. Tech.*, vol. 21, pp. 247-252, 2011, PMCID: PMC5603290.

116. Zeng GL: Gibbs artifact reduction by non-negativity constraint. *J. Nuc. Med. Tech.*, vol. 39, pp. 213-219, 2011, PMID: 21795376, PMCID: PMC5295764

117. Zeng GL: A filtered backprojection algorithm with characteristics of the iterative Landweber algorithm. *Med. Phys.*, vol. 39, pp. 603-607, 2012. PMCID: PMC3267791

118. Zeng GL and Gullberg GT: Null-space function estimation for the interior problem. *Phys. Med. Biol.*, vol. 57, pp. 1873-1887, 2012, PMID: 22421269, PMCID: PMC3358924

119. Zeng GL: A filtered backprojection MAP algorithm with nonuniform sampling and noise modeling. *Med. Phys.*, vol. 39, pp. 2170-2178, 2012, PMID: 22482638, PMCID: PMC3326075

120. Zeng GL: Filtered backprojection algorithm can outperform maximum likelihood EM algorithm, *Int. J. Imag. Sys. Tech.*, vol. 22, pp. 114-120, 2012, PMCID: PMC5602532

121. Zeng GL, Hernandez A, Kadrmas D, and Gullberg GT: Kinetic parameter estimation using a closed-form expression via integration-by-parts, *Phys. Med. Biol.*, vol. 57, pp. 5809- 5821, 2012, PMID: 22951326, PMCID: PMC3495573

122. Zeng GL, Kadrmas DJ, and Gullberg GT: Fourier domain closed-form formulas for estimation of kinetic parameters in multi-compartment models. *BioMedical Engineering OnLine*, 11:70, 2012. DOI: 10.1186/1475-925X-11-70, URL: <http://www.biomedical-engineering-online.com/content/11/1/70>, PMID: 22995548, PMCID: PMC3538570

123. Zeng GL, Li Y, and DiBella ERV: Non-iterative reconstruction with a prior for undersampled radial MRI data, *Int. J. Imag. Sys. Tech.*, vol. 23, pp. 53-58, 2013, PMID: 25520543, PMCID: PMC4266489

124. Zeng GL and Gullberg GT: On the bias of finite-view interior tomography using piecewise-constant and non-negativity constraints. *Phys. Med. Biol.*, vol. 58, pp. L13-L16, 2013 [Featured Article], PMID: 23380877, PMCID: PMC3584581

125. Zeng GL and Zamyatin A: A filtered backprojection algorithm with ray-by-ray noise weighting, *Med. Phys.*, vol. 40, 031113; <http://dx.doi.org/10.1118/1.4790696> (7 pages), Online Publication Date: 28 February 2013, PMID: 23464293, PMCID: PMC5148087

126. Zeng GL, Li Y and Zamyatin A: Iterative total-variation reconstruction vs. weighted filtered-backprojection reconstruction with edge-preserving filtering, *Phys. Med. Biol.*, vol. 58, pp. 3413-3431, 2013, PMID: 23618896, PMCID: PMC4247166

127. Mao Y and Zeng GL: Tailored ML-EM algorithm for reconstruction of truncated projection data using few view angles, *Phys. Med. Biol.*, vol. 58, pp. N157-N169, 2013, PMID: 23689102, PMCID: PMC3745016

128. Hernandez AM, Huber JS, Murphy ST, Janabi M, Zeng GL, Brennan1 KM, O'Neil JP, Seo Y, and Gullberg GT: Longitudinal evaluation of left ventricular substrate metabolism, perfusion and dysfunction in the SHR model of hypertrophy using microPET/CT imaging, *J. Nuc. Med.*, vol. 54, no. 11, pp. 1938-1945, 2013, PMID: 24092939, PMCID: PMC4000452

129. Zeng GL: Comparison of a noise-weighted filtered backprojection algorithm with the standard MLEM algorithm for Poisson noise, *J. Nucl. Med. Tech.*, vol. 41, no. 4, pp. 283-288, 2013, PMID: 24159012, PMCID: PMC4243832

130. Zeng GL: Revisit of combined parallel-beam/cone-beam or fan-beam/cone-beam imaging, *Med. Phys.*, vol. 40, pp. 100701.1-100701.5, 2013, PMID: 24089888, PMCID: PMC3785539

131. Zeng GL: One-angle fluorescence tomography with in-and-out motion, *Journal of Electronic Imaging*, vol. 22(4), 043018, 2013, PMID: 25520544, PMCID: PMC4266511

132. Feng B and Zeng GL: Modeling of pixelated detector in SPECT pinhole reconstruction, *IEEE Trans. Nucl. Sci.*, vol. 61, no. 2, pp. 888-893, 2014, PMID: 25574058, PMCID: PMC4285383

133. Zeng GL: Model-based filtered backprojection algorithm: A tutorial, *Biomedical Engineering Letters*, (<http://link.springer.com/article/10.1007/s13534-014-0121-7>), vol. 4, Issue 1, pp. 3-18, March 2014. PMID: 25574421, PMCID: PMC4285391

134. Zeng GL: Noise-weighted spatial domain FBP algorithm, *Med. Phys.* (<http://scitation.aip.org/content/aapm/journal/medphys/41/5/10.1118/1.4870989>), vol. 41, 051906, 2014, PMID: 24784385, PMCID: PMC4000392

135. Zeng GL: Comparison of FBP and iterative algorithms with non-uniform angular sampling, *IEEE Trans. Nucl. Sci.*, vol. 62, no. 1, pp.120-130, 2015, PMID: 25678716, PMCID: PMC4323100

136. Zeng GL: Revisit of the ramp filter, *IEEE Trans. Nucl. Sci.*, vol. 62, no. 1, pp.131-136, 2015, PMID: 25729091, PMCID: PMC4341983

137. Zeng GL: On few-view tomography and staircase artifacts, *IEEE Trans. Nucl. Sci.*, vol. 62, no. 3, pp. 851-858, 2015, PMID: PMC5606164.

138. Zeng GL: Fan-beam short-scan FBP algorithm is not exact, *Phys. Med. Biol.*, vol. 60, N131-N139, 2015, PMID: 25802974, PMCID: PMC5297440

139. Mao Y, Yu Z and Zeng GL: Geometric calibration and image reconstruction for segmented-slant-hole stationary cardiac SPECT system, *J. Nucl. Med. Tech.*, vol. 43, pp. 103-112, 2015, PMID: 25956691, PMCID: PMC5297456

140. Zeng GL and Li Y: A discrete convolution kernel for no-DC MRI, *Inverse Problems*, vol. 31, 085006, 2015. PMCID: PMC5603301

141. Mao Y, Yu Z and Zeng GL: Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations, *Med. Phys.*, vol. 32, pp. 5426-5434, 2015, PMID: 26328991, PMCID: PMC4545103

142. Zeng GL: The ML-EM algorithm is not optimal for Poisson noise, *IEEE Trans. Nucl. Sci.*, vol. 62, pp. 2096-2101, 2015, doi: 10.1109/NSSMIC.2015.7582178. PMID: 28935996; PMCID: PMC5603291.

143. Zeng GL and Divkovic Z: An extended Bayesian-FBP algorithm, *IEEE Trans. Nucl. Sci.*, vol. 63, pp. 151-156, 2016, doi: 10.1109/TNS.2015.2501980. Epub 2015 Feb 15. PMID: 27041768; PMCID: PMC4813811.

144. Zeng GL: Noise-weighted FBP algorithm for uniformly attenuated SPECT projections, *IEEE Trans. Nucl. Sci.*, vol. 63, pp. 1435-1439, 2016, doi: 10.1109/TNS.2016.2564924. Epub 2016 Jun 23. PMID: 27840452; PMCID: PMC5102335.

145. Zeng GL and Wang W: Noise weighting with an exponent for transmission CT, *Biomedical Physics & Engineering Express*, vol. 2, no. 045004, 2016. NIHMSID: 1581567, PMCID: PMC7725243, doi: [10.1088/2057-1976/2/4/045004](https://doi.org/10.1088/2057-1976/2/4/045004)

146. Zeng GL and Wang W: Does noise weighting matter in CT iterative reconstruction? *IEEE Transactions on Radiation and Plasma Medical Sciences*, vol. 1, pp. 68-75, 2017. doi: 10.1109/TNS.2016.2630685. Epub 2016 Nov 18. PMID: 29130074; PMCID: PMC5675719.

147. Zeng GL: A fast method to emulate an iterative POCS image reconstruction algorithm, *Med. Phys.*, vol. 44, pp. e353-e359, 2017. doi: 10.1002/mp.12169. PMID: 29027236; PMCID: PMC5646223.

148. Zeng GL and Li Y: Fourier-domain analysis of the iterative Landweber algorithm, *IEEE Transactions on Radiation and Plasma Medical Sciences*, vol. 1, no. 6, pp. 511-516, 2017. PMID: 29457145; PMCID: PMC5813836.

149. Zeng GL: Estimation of the initial image's contributions to the iterative Landweber reconstruction, *IEEE Transactions on Radiation and Plasma Medical Sciences*, vol. 2, pp. 27-32, 2018. [10.1109/TRPMS.2017.2774834](https://doi.org/10.1109/TRPMS.2017.2774834), PMC8168974, PMID: 34079920.

150. Zeng GL: Maximum-likelihood expectation-maximization algorithm vs. windowed filtered backprojection algorithm: A case study, *Journal of Nuclear Medicine Technology*, vol. 46(2), pp. 129-132, 2018. doi: 10.2967/jnmt.117.196311. NIHMSID: 1581556

151. Zeng GL: Filtered backprojection implementation of the immediately-after-backprojection filtering, *Biomedical Physics & Engineering Express*, vol. 4, 047005, 2018. PMID: 33304613; PMCID: PMC7725241, doi: [10.1088/2057-1976/aac9af](https://doi.org/10.1088/2057-1976/aac9af)

152. Zeng GL: Emission expectation-maximization look-alike algorithms for x-ray CT and other applications, *Medical Physics*, vol. 45, pp. 3721-3727, 2018. PMID: 29963702; PMCID: PMC6314922.

153. Zeng GL: Estimation of the optimal iteration number for minimal image discrepancy, *IEEE Transactions on Radiation and Plasma Medical Sciences*, vol. 3(5), pp.572-578, 2019. PMID: 32258854; PMCID: PMC7120759. DOI:[10.1109/TRPMS.2018.2876594](https://doi.org/10.1109/TRPMS.2018.2876594)

154. Zeng GL: Image noise covariance can be adjusted by a noise weighted filtered backprojection algorithm, *IEEE Transactions on Radiation and Plasma Medical Sciences*, vol. 3, 668-674, 2019. DOI: [10.1109/TRPMS.2019.2900244](https://doi.org/10.1109/TRPMS.2019.2900244), PMID: 32258855; PMCID: PMC7120744.

155. Zeng GL: Modification of Green's one-step-late algorithm for attenuated emission data, *Biomed. Phys. Eng. Express*, vol. 5, 037001, 2019. 10.1088/2057-1976. PMID: 32351710; PMCID: PMC7189521.

156. Zeng GL: Counter examples for unmatched projector/backprojector in an iterative algorithm, *Chinese Journal of Academic Radiology*, vol. 1, pp. 13-24, On-Line: <https://rdcu.be/bxf00> or <https://doi.org/10.1007/s42058-019-00006-1>, 2019, NIHMSID: 1581547, PMC8184118

157. Zeng GL: Real-time selection of iteration number, *Biomedical Physics & Engineering Express*, vol. 5, 047007, 2019. PMID: 33304616; PMCID: PMC7725242, doi: [10.1088/2057-1976/ab202a](https://doi.org/10.1088/2057-1976/ab202a)

158. Zeng GL and Li Y: Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms, *Visual Computing for Industry, Biomedicine, and Art*, 2:14, 2019, open access, <https://doi.org/10.1186/s42492-019-0027-4>, PMID: 32190406; PMCID: PMC7055571.

159. Zeng GL: Sparse-view tomography via displacement function interpolation, *Visual Computing for Industry, Biomedicine, and Art*, 2:13, 2019, open access, PMID: 32240401; PMCID: PMC7099552, doi:10.1186/s42492-019-0024-7, PMID 32240401, <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099552>, NIHMSID: 1581552

160. Zeng GL, Li Y, and Huang Q: Time-of-flight PET reconstruction: Two-dimensional case, *Visual Computing for Industry, Biomedicine, and Art*, 2:22, 2019, open access, PMID: 32240412; PMCID: PMC7099571, <https://doi.org/10.1186/s42492-019-0035-4>

161. Zeng GL, Li Y, and Huang Q: Time-of-flight PET reconstruction: Three-dimensional case, *Visual Computing for Industry, Biomedicine, and Art.*, 3:5, 2020, open access, PMID: 32240417; PubMed Central PMCID: PMC7099564, DOI: 10.1186/s42492-020-0042-5, DOI: 10.1186/s42492-020-0042-5, <https://rdcu.be/b1PKi>

162. Zeng GL and DiBella RV: Non-iterative image reconstruction from sparse magnetic resonance imaging radial data without priors, *Visual Computing for Industry, Biomedicine, and Art*, 3, article number 9, 2020, <https://doi.org/10.1186/s42492-020-00044-y>, PMID: 32323097 PMCID: PMC7176778

163. Zeng GL, Lv L, and Huang Q: Poisson-noise weighted filter for time-of-flight positron emission tomography, *Visual Computing for Industry, Biomedicine, and Art*, **3**, article number 10, 2020, <https://doi.org/10.1186/s42492-020-00048-8> PMID: 32350714

164. Zeng GL: Pre-filter that incorporates the noise model, *Visual Computing for Industry, Biomedicine, and Art*, **3**, article number 13, 2020, <https://doi.org/10.1186/s42492-020-00051-z>, PubMed PMID: 32440712; PMCID: PMC7242545.

165. Zeng GL: Projection-domain iteration to estimate unreliable measurements. *Vis. Comput. Ind. Biomed. Art* **3**, 16, 2020. <https://doi.org/10.1186/s42492-020-00054-w>, PMID: 32691172; PMCID: PMC7393000.

166. Zeng GL and DiBella EV: Iterative versus non-iterative image reconstruction methods for sparse MRI, *Journal of Radiology and Imaging*. Volume 4, Issue 5, August 2020, Pages 30–39, <https://nobleresearch.org/Doi/10.14312/2399-8172.2020-5>

167. Zeng GL: Fast filtered back projection algorithm for low-dose computed tomography, *Journal of Radiology and Imaging*, vol. 4(7), pp. 45-50, 2020. NIHMSID:1711765, PMCID: PMC8294203, <http://dx.doi.org/10.14312/2399-8172.2020-7> <https://nobleresearch.org/Journal/Journal-of-Radiology-and-Imaging>

168. Zeng GL and Huang Q: One-view time-of-flight positron emission tomography, *IEEE Trans. Radiation and Plasma Medical Sciences*, (early publication Nov 2020), vol. 5 (5), pp. 723 – 728, 2021. DOI: 10.1109/TRPMS.2020.3038810, <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9265250>

169. Zeng GL and Li Y: Analytic continuation and incomplete data tomography, *Journal of Radiology and Imaging*, vol. 5(2), pp. 5-11, 2021. NIHMS1711775, PMCID: PMC8294472, <https://nobleresearch.org/Doi/10.14312/2399-8172.2021-2>

170. Zeng GL and Zeng M: Reducing metal artifacts by restricting negative pixels, *Visual Computing for Industry, Biomedicine, and Art*, vol. 4, no. 17, 2021. <https://doi.org/10.1186/s42492-021-00083-z> PMID: 34059962

171. Zeng GL: A deep-network piecewise linear approximation formula, *IEEE Access*, vol. 9, pp. 120665-120674, 2021 doi: 10.1109/ACCESS.2021.3109173, PMCID: PMC8442618, NIHMSID: NIHMS1738616, PMID: 34532202, <https://ieeexplore.ieee.org/document/9526604?source=authoralert>

172. Zeng GL: A projection-domain iterative algorithm for metal artifact reduction by minimizing the total-variation norm and the negative-pixel energy, *Visual Computing for Industry, Biomedicine, and Art*, vol. 5, 1, 2022. <https://doi.org/10.1186/s42492-021-00094-w>

173. Zeng GL: Iterative analytic extension in tomographic imaging, *Visual Computing for Industry, Biomedicine, and Art*, vol. 5, no. 4, 2022. <https://doi.org/10.1186/s42492-021-00099-5>

174. Zeng GL: Photon starvation artifact reduction by shift-variant processing, *IEEE Access*, vol. 10, pp. 13633-13649, 2022. 10.1109/ACCESS.2022.3142775

175. Lv L, Zeng GL, Zan Y, Hong X, Guo M, Chen G, Tao W, Ding W, and Huang Q: A back-projection-and-filtering-like (BPF-like) reconstruction method with the deep learning filtration from listmode data in TOF-PET, *Medical Physics*, 2022, pp. 1-14, <https://doi.org/10.1002/mp.15520>.

B. Submitted for Publication

C. Invited Talks

1. Zeng GL: Overview of various geometric response corrections in SPECT, *SNM Mid-Winter Symposium*, Las Vegas, NV, Feb. 2-3, 1998.
2. Zeng GL: Reconstruction algorithms, *AAPM Mini-Summer School on Nuclear Medicine*, Madison, WI, June 21-23, 1998.
3. Zeng GL: Cone-Beam SPECT, University of Wisconsin, 1998.
4. Zeng GL: Image reconstruction — a tutorial, *Frontiers in Nuclear Medicine Technology*, Mol, Belgium, May 6-7, 1999.
5. Zeng GL: Practical iterative algorithms, *46th Annual Meeting of Society of Nuclear Medicine*, Los Angeles, June 8, 1999.
6. Zeng GL: SPECT Research, Peking University, Beijing, China, 1997.
7. Zeng GL: Reconstruction Algorithms in Nuclear Medicine, Xidian University, Xi'An, China, 1999.
8. Zeng GL: Medical Imaging, IEEE Utah Section Meeting, Department of Electrical Engineering, University of Utah, 2000.
9. Zeng GL: Overview of Cone-Beam Reconstruction Algorithms, Department of Medical Physics, University of Wisconsin, Madison, WI, Nov. 24, 2002.
10. Zeng GL: Development of Cone-Beam Reconstruction Algorithms, Department of Radiology, University of Iowa, Iowa City, IA, Aug. 11, 2003.
11. Zeng GL: Gamma Cameras: Yesterday, Today and Tomorrow, plenary presentation at European Nuclear Medicine Congress, Amsterdam, Aug. 23-27, 2003.
12. Zeng GL: Gamma Cameras: Yesterday, Today and Tomorrow, Department of Bioengineering, University of Utah, Sept. 5, 2003.
13. Zeng GL: SPECT Cameras: from Yesterday to Tomorrow, The 2nd World Congress for Chinese Biomedical Engineers, Beijing, China, Sept. 27-29, 2004.
14. Zeng GL: Zeng and the art of reconstruction, GE Research, Albany, NY, Nov. 8, 2006.
15. Zeng GL: Zeng and the art of how to improve small animal and human SPECT, Columbia University, New York City, NY, June 15, 2007.
16. Zeng GL: Can we do better than multi-pinhole imaging? Siemens, Knoxville, KY, Oct. 11, 2007.
17. Zeng GL: SPECT and its reconstruction methods, Hong Kong University, Hong Kong, Jan. 7, 2008.

18. Zeng GL: Principles of nuclear medicine, Zhejiang University, Hangzhou, China, Dec. 2011.
19. Zeng GL: Nuclear medicine and engineering, Biomedical Engineering Department, University of Utah, 2013.
20. Zeng GL: The road to low-dose CT and real-time MRI, Brigham Young University, 2013
21. Zeng GL: Nuclear medicine and engineering, Weber State University, 2013.
22. Zeng GL: FBP that emulates iterative, Tsinghua University, Beijing, China, 2013.
23. Zeng GL: Nuclear medicine, low-dose CT and real-time MRI, The Fourth Military Medical University, Xi'An, China, 2013.
24. Zeng GL: What is nuclear medicine, Xidian University, XI'An, China, 2013.
25. Zeng GL: How does the Fourier transform make the MRI possible, Weber State University, Ogden, Utah, 2014.
26. Zeng GL: Iterative image reconstruction in one step, Shanghai Jiaotong University, Shanghai, China, Dec. 2015.
27. Zeng GL: Iterative image reconstruction in one step, United Imaging, Shanghai, China, Dec. 2015.
28. Zeng GL: Low-dose CT grand challenge, AAPM Annual Meeting, Washington DC, Aug. 1, 2016.
29. Zeng GL: Image reconstruction with arbitrary nonlinear constraints: One backprojection and no forward projection, The 4th CSE-NIMS Workshop, CT Image Reconstruction & Deep Learning, Yonsei University, Seoul, South Korea, June 14, 2017.
30. Zeng GL: Part 1: Iterative POCS algorithm with one backprojection; Part 2: Iterative reconstruction, The Fourth Military Medical University, Xi'An, China, June 2017.
31. Zeng GL: A fast method to emulate an iterative POCS image reconstruction algorithm, Xidian University, XI'An, China, June 2017.
32. Zeng GL: The role of image reconstruction algorithm in low dose CT, Varex Imaging, Salt Lake City, UT, November 2018.
33. Zeng GL: My previous work related to CT image reconstruction, United Imaging, Shanghai, China, March 2019.
34. Zeng GL: Some unorthodox thoughts on medical imaging sampling, Oxford University, Oxford, United Kingdom, October, 2019.

D. Text Books and Book Chapters

1. [Text Book] Zeng GL and Zeng M: *Electric Circuits: A Concise, Conceptual Tutorial*, Springer, ISBN 978-3-030-60514-8, 2021, <https://link.springer.com/book/10.1007/978-3-030-60515-5>

2. [Test Book] Zeng GL: *Image Reconstruction: Applications in Medical Sciences*, ISBN 978-3-110-50059-2, Walter de Gruyter GmbH, Berlin/Boston, 2017.
3. [Text Book] Zeng GL: *Medical Imaging Reconstruction, A Tutorial*, ISBN: 978-3-642-05367-2, 978-7-04-020437-7, Higher Education Press, Springer, Beijing, 2009.
4. [Text Book] Zeng GL: *Medical Imaging Reconstruction, A Tutorial* (Chinese Translation), ISBN: 978-7-04-028828-5, Higher Education Press, 2010.
5. He D, Zeng GL, *et al*: Chinese Translation of C. T. Wong, *Modern Analysis*, NWTCI Press, Xi'An, China 1986.
6. Gullberg GT, Huesman RH, Ross SG, Di Bella EVR, Zeng GL, Teutter BW, Christian PE, Foresti SA: Dynamic Cardiac Single Photon Emission Computed Tomography. In *Nuclear Cardiology: State of the Art and Future Directions*, BL Zaret and GA Beller, eds., (Philadelphia, PA: Mosby-Year Book, Inc.), 1999.
7. Zeng GL: Chapter 8. Reconstruction algorithms, *Lecture Notes in AAPM Mini-Summer School on Nuclear Medicine* .
8. Zeng GL, Galt JR, Wernick MN, Mintzer RA, and Aarsvold JN: Chapter 7. Single-photon emission computed tomography, *Emission Tomography: The Fundamentals of PET and SPECT*, M Wernick and J Aarsvold, eds., (Elsevier Academic Press), 2004.
9. Zeng GL: "Principles of SPECT", in Townsend, D. (ed.), *Medical Imaging: Imaging Techniques for Pre-clinical and Clinical Applications*, The Biomedical & Life Sciences Collection, Henry Stewart Talks Ltd, London (online at <http://hstalks.com/?t=BL1032562-Zeng>), 2010.

E. Conference Proceedings

1. Karni S and Zeng GL: A new adaptive IIR algorithm with unimodal performance surfaces. *The 30th Midwest Symposium on Circuits and Systems*, Syracuse, NY, Aug. 1987, pp. 992- 995.
2. Karni S and Zeng GL: A new bound for the adaptive gain of LMS algorithm. *The 31st Midwest Symposium on Circuits and Systems*, St. Louis, MO, Aug. 1988, pp. 727-729.
3. Zeng GL, Hush D and Ahmed N: An application of neural net in decoding error-correcting codes. *International Symposium on Circuits and Systems*, Portland, OR, May 1989, pp. 782-785.
4. Zeng GL and Karni S: A polynomial approximation filter design technique. *International Symposium on Circuits and Systems*, New Orleans, LA, May 1990, pp. 2764-2766.
5. Gullberg GT, Zeng GL, Christian PE, Tsui BMW and Morgan H: Single photon emission computed tomography of the heart using cone beam geometry and noncircular detector rotation. In *Information Processing in Medical Imaging*, XIth IPMI International Conference, Berkeley, CA, June 19-23, 1989. Eds: D. A. Ortendahl and J. Lalacer, Wiley- Liss, New York, 1990, pp. 123-138.
6. Zeng GL and Gullberg GT: Short-scan cone beam algorithm for circular and noncircular detector orbits. *SPIE - Medical Imaging IV*, Newport Beach, CA, February 4-9, 1990, SPIE 1233:453-463, 1990.

7. Gullberg GT and Zeng GL: Spectral decomposition of the exponential Radon transform. *SPIE-Optical and Optoelectronic Applied Science and Engineering*, San Diego, CA, May, 1990, SPIE 1351:288-299.
8. Zeng GL, Gullberg, Terry JA and Tsui BMW: Three-dimensional iterative reconstruction algorithms with attenuation and geometric point response correction. *Conference Record of the 1990 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Arlington, VA, Oct. 22-27, 1990, pp. 1475-1479.
9. Zeng GL and Gullberg GT: Short-scan fan beam algorithm for non-circular detector orbits. *SPIE - Medical Imaging V*, San Jose, CA, February 28-March 1, 1991. SPIE 1445, pp. 332- 340.
10. Clack R, Zeng GL, Weng Y, Christian PE and Gullberg GT: Cone beam single photon emission computed tomography using two orbits. In *Information Processing in Medical Imaging*, XIIth IPMI International Conference, Wye College, Wye, Kent, England, July 7- 12, 1991. Springer, Heidelberg, 1991, pp. 45-54.
11. Zeng GL and Gullberg GT: Frequency domain correction of the three-dimensional geometric point response function in SPECT imaging, *Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Santa Fe, NM, Nov. 2-9, 1991, pp. 1943-1947.
12. Tung CH, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT: Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. *Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Santa Fe, NM, Nov. 2-9, 1991, pp. 2018-2022.
13. Weng Y, Zeng GL and Gullberg GT: A reconstruction algorithm for helical cone-beam SPECT. *Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Orlando, FL, Oct. 25-31, 1992, pp. 1077-1079.
14. Gullberg GT and Zeng GL: An elliptical orbit backprojection filtering algorithm for SPECT. *Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Orlando, FL, Oct. 25-31, 1992, pp. 1207-1209.
15. Zeng GL and Gullberg GT: A backprojection filtering algorithm for cone beam tomography. *Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Orlando, FL, Oct. 25-31, 1992, pp. 1150-1152.
16. Zeng GL and Gullberg GT: A MAP algorithm for transmission computed tomography. *Conference Record of the 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, CA, Nov. 4-6, 1993, pp. 1202-1204.
17. Zeng GL and Gullberg GT: A ray-driven backprojector for backprojection filtering and filtered backprojection algorithms. *Conference Record of the 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, CA, Nov. 4-6, 1993, pp.1199-1201.
18. Zeng GL and Gullberg GT: A rotating and squashing projector-backprojector pair for fan- beam and cone-beam iterative algorithms. *Conference Record of the 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, CA, Nov. 4-6, 1993, pp. 1922-1926.

19. Gullberg GT and Zeng GL: A reconstruction algorithm using singular value decomposition of a discrete representation of the exponential Radon transform using natural pixels. *Conference Record of the 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, CA, Nov. 4-6, 1993, pp. 1439-1443.
20. Gullberg GT, Zeng GL, and Clack R: Inverse problems in single photon emission computed tomography, *International Symposium on Computerized Tomography*, Novosibirsk, Russia, August 10-14, 1993, p. 58.
21. Foresti S and GL Zeng: Distributed and massively parallel methods for reconstruction of SPECT images. *Proceedings of the First World Congress on Computational Medicine, Public Health and Biotechnology*, April 24-28, 1994, Austin, Texas, Ed: M. Witten, 1995
22. Gullberg GT, Hsieh Y-L, and Zeng GL: An iterative algorithm using a natural pixel representation of the attenuated Radon transform. *Conference Record of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, Virginia, Oct. 30 - Nov. 5, 1994, pp. 1224-1226.
23. Zeng GL and Gullberg GT: Can the backprojection filtering algorithm be as accurate as the filtered backprojection algorithm? *Conference Record of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, Virginia, Oct. 30 - Nov. 5, 1994, pp. 1232-1236.
24. Maniawski PJ, Morgan HT, Gullberg GT, Zeng GL, Welch AE, and Tung CH: Performance evaluation of a transmission reconstruction algorithm with simultaneous transmission- emission SPECT system in a presence of data truncation. *Conference Record of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, Virginia, Oct. 30 - Nov. 5, 1994, pp. 1578-1581.
25. Zeng GL, Gullberg GT, and Huesman RH: Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements. *Conference Record of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, Virginia, Oct. 30 - Nov. 5, 1994, pp. 1739-1743.
26. Gullberg GT and Zeng GL: Backprojection filtering for variable orbit fan beam tomography. *Conference Record of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, Virginia, Oct. 30 - Nov. 5, 1994, pp. 1945-1947.
27. Foresti S and GL Zeng: Parallel methods for the reconstruction of SPECT images. *Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing*, February 15-17, 1995, San Francisco. Ed: D. H. Bailey *et. al.*
28. Weng Y, Zeng GL and Gullberg GT: A filtered backprojection algorithm for attenuated cone-beam projections sampled on a sphere. *Proceedings of the 1995 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Aix- les-Bains, Savoie, France, July 4-6, 1995, pp. 175-178.
29. Zeng GL, Gullberg GT, and Foresti SA: Eigen analysis of cone-beam scanning geometries. *Proceedings of the 1995 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Aix-les-Bains, Savoie, France, July 4-6, 1995, pp. 261-265.
30. Weng Y, Zeng GL, and Gullberg GT: Filtered backprojection algorithms for attenuated parallel and cone-beam projections sampled on a sphere. *Proceedings of the 1995*

International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, Aix-les-Bains, Savoie, France, July 4-6, 1995, pp. 175-179.

31. Gullberg GT and Zeng GL: Three-dimensional SPECT reconstruction of combined cone-beam and fan-beam data acquired using a three-detector SPECT system. *Proceedings of the 1995 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Aix-les-Bains, Savoie, France, July 4-6, 1995, pp. 329-332.
32. Hsieh YL, Zeng GL, and Gullberg GT: Truncation studies using the generalized naturalized natural pixel bases for parallel beam geometry. *Conference Record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, Oct. 21 - 28, 1995, pp. 1156-1159.
33. Zeng GL and Gullberg GT: Does truncation always result in an under-determined problem? *Conference Record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, Oct. 21 - 28, 1995, pp. 1180-1183.
34. Hsieh YL, Gullberg GT, Zeng GL, and Huesman RH: Fan beam image reconstruction using generalized natural pixel bases. *Conference Record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, Oct. 21 - 28, 1995, pp. 1189-1192.
35. Weng Y, Zeng GL, and Gullberg GT: Iterative reconstruction with attenuation compensation from cone-beam projections acquired via non-planar orbit. *Conference Record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, Oct. 21 - 28, 1995, pp. 1262-1265.
36. Weng Y, Zeng GL, and Gullberg GT: Analytical inversion formula for attenuated fan-beam projections. *Conference Record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, Oct. 21 - 28, 1995, pp. 1282-1286.
37. Gullberg GT, Huesman RH, Zeng GL, and Foresti SA: Efficient estimation of dynamic cardiac SPECT kinetic parameters using weighted least squares of dynamic reconstructions. *Conference Record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Francisco, Oct. 21 - 28, 1995, pp. 1684-1688.
38. Zeng GL and Gullberg GT: Single photon emission local tomography (SPECT). *Conference Record of the 1996 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Anaheim, CA, Nov. 2 - 9, 1996, pp. 1628-1632.
39. Hsieh YL, Zeng GL and Gullberg GT: Projection space image reconstruction using strip functions to calculate pixels more "natural" for modeling the geometric response of the SPECT collimator. *Conference Record of the 1996 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Anaheim, CA, Nov. 2 - 9, 1996, pp. 1668-1672.
40. Basko R, Zeng GL and Gullberg GT: Analytical reconstruction formulation for one-dimensional Compton camera. *Conference Record of the 1996 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Anaheim, CA, Nov. 2 - 9, 1996, pp. 1772-1776.
41. Foresti S, Zeng GL, Gullberg GT, Huesman RH: Parallel Least Squares Estimates of 2-D SPECT Image Reconstructions on the SGI Power Challenge. *Workshop on Applied Parallel Computing (PARA)*, Lyngby, Denmark, August 18-21, 1996, pp. 256-261.

42. Zeng GL and Gullberg GT: Iterative and analytical reconstruction algorithms for varying focal-length cone-beam projections. *Proceedings of the 1997 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Nemacolin Woodlands, PA, June 25-28, 1997, pp. 40-43.

43. Basko R, Zeng GL and Gullberg GT: Application of spherical harmonics to image reconstruction for Compton camera. *Proceedings of the 1997 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Nemacolin Woodlands, PA, June 25-28, 1997, pp. 16-19.

44. Gullberg GT and Zeng GL: On combination of cone-beam and fan-beam projections in solving a linear system of equations. *Proceedings of the 1997 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Nemacolin Woodlands, PA, June 25-28, 1997, pp. 113-116.

45. Huesman RH, Reutter RW, Zeng GL, and Gullberg GT: Kinetic parameter estimation from SPECT cone-beam projection measurements. *Proceedings of the 1997 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Nemacolin Woodlands, PA, June 25-28, 1997, pp. 121-125.

46. Hsieh YL, Zeng GL, and Gullberg GT: Estimation of geometric parameters for cone beam geometry. *Proceedings of the 1997 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Nemacolin Woodlands, PA, June 25-28, 1997, pp. 150-153.

[47.](#) Zeng GL, Bai C, and Gullberg GT: A projector/backprojector with slice-to-slice blurring for efficient 3D scatter modeling, *Conference Record of the 1997 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Albuquerque, NM, Nov. 13 - 15, pp. 1731-1737.

[48.](#) Bai C, Zeng GL, Gullberg GT, DiFilippo F, and Miller S: A slab-by-slab blurring model for geometric point response and attenuation correction using iterative reconstruction algorithms. *Conference Record of the 1997 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Albuquerque, NM, Nov. 13 - 15, pp. 1371-1375.

[49.](#) Panin VY, Zeng GL, and Gullberg GT: Reconstructions of truncated projections using an optimal basis expansion derived from the cross correlation of a “knowledge set” of a priori cross sections. *Conference Record of the 1997 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Albuquerque, NM, Nov. 13 - 15, pp. 1126-1130.

[50.](#) Basko R, Gullberg GT, and Zeng GL: Fully three dimensional image reconstruction from “V”-projections acquired by a Compton camera with three vertex electronic collimation, *Conference Record of the 1997 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Albuquerque, NM, Nov. 13 - 15, pp. 1077-1081.

51. Bai C, Zeng GL, Kadrmas, and Gullberg: A study of apparent apical defects in cardiac SPECT images when performing attenuation compensation, *Conference Record of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Toronto, Canada, Nov. 8 - 14, pp. 1791-1795.

52. Gullberg GT, Roy DG, Basko RE, and Zeng GL: Tensor tomography, *Conference Record of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Toronto, Canada, Nov. 8 - 14, pp. 1165-1169.

53. Basko, R, Gullberg GT, and Zeng GL: Application of spherical harmonics to cone beam image reconstruction, *Conference Record of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Toronto, Canada, Nov. 8 - 14, pp. 1649-1650.
54. Zeng GL and Gullberg GT: Two-detector, asymmetric cone-beam helical SPECT, *Conference Record of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Toronto, Canada, Nov. 8 - 14, pp. 1477-1484.
55. Panin VY, Zeng GL, and Gullberg GT: Total variation regulated EM algorithm, *Conference Record of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Toronto, Canada, Nov. 8 - 14, pp. 1562-1566.
56. Panin VY, Zeng GL, and Gullberg GT: Regularization parameter selection for Bayesian reconstruction of attenuation map, *Conference Record of the 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Toronto, Canada, Nov. 8 - 14, pp. 1594-1598.
57. Bai C, Zeng GL, Laurette I, Panin VY, and Gullberg GT: A study of intensity decrease of apical region in cardiac SPECT images. *Proceedings of the 1999 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Egmond aan Zee, The Netherlands, June 23-26, 1999, pp. 293-296.
58. Zeng GL and Gullberg: Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. *Proceedings of the 1999 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Egmond aan Zee, The Netherlands, June 23-26, 1999, pp. 119-122.
59. Laurette I, Zeng GL, and Gullberg GT: A three-dimensional ray-tracing method to correct for non-uniform attenuation, scatter, and detector response in SPECT. *Proceedings of the 1999 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Egmond aan Zee, The Netherlands, June 23-26, 1999, pp. 145-148.
60. Panin VY, Zeng GL, and Gullberg GT: Slices correlation regularization for attenuation map reconstruction using only emission data with data consistency conditions and a “knowledge set.” *Proceedings of the 1999 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Egmond aan Zee, The Netherlands, June 23-26, 1999, pp. 224-227.
61. Laurette I, Zeng GL, and Gullberg GT: Simultaneous 3D correction for attenuation, scatter, and detector response in SPECT, *Conference Record of the 1999 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seattle, WA, Oct, 24-30.
62. Panin VY, Zeng GL, and Gullberg GT: A method of attenuation map and emission activity reconstructions from emission data, *Conference Record of the 1999 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seattle, WA, Oct, 24-30.
63. Gagnon D, Tung C-H, Zeng GL, Hawkins W: Design and early testing of a new medium-energy transmission device for attenuation correction in SPECT and PET, *Conference Record of the 1999 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seattle, WA, Oct, 24-30.
64. Bal G, Zeng GL, Kadrmas DJ, and Clackdoyle R: Three-dimensional geometric point response correction in rotating slant hole (RSH) SPECT, *Conference Record of the 1999*

IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, WA, Oct, 24- 30.

65. Bai, C, Zeng GL, and Gullberg GT: The modeling of multiple order Compton scatter in SPECT, *Conference Record of the 1999 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, WA, Oct, 24-30.*
66. Zeng GL, Gullberg GT, Christian PE, and Gagnon D: Cone-beam iterative reconstruction of a segment of a long object, *Conference Record of the 2000 IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, France, Oct, 16-20.*
67. Bal G, Clackdoyle R., Kadrmas DJ, Zeng GL, and Christian PE: Evaluating rotating slant- hole SPECT with respect to parallel hole SPECT, *Conference Record of the 2000 IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, France, Oct, 16-20.*
68. Panin VY, Zeng GL, and Gullberg GT: An iterative approach to tensor tomography, *Conference Record of the 2000 IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, France, Oct, 16-20.*
69. Gullberg GT, Defrise M, Panin VY, and Zeng GL: Backprojection filtering algorithms for reconstruction of vector and second order tensor fields, *Conference Record of the 2000 IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, France, Oct, 16-20.*
70. Taguchi K, Zeng GL, and Gullberg GT: Cone-beam image reconstruction using spherical harmonics: short-object problem with midsize-detector, *Conference Record of the 2000 IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, France, Oct, 16-20.*
71. Taguchi K, Zeng GL, and Gullberg GT: Cone-beam image reconstruction from equi-angular sampling using spherical harmonics. *Proceedings of SPIE Medical Imaging 2001 Conference, San Diego, CA, Feb. 17-22, 2001.*
72. Zeng GL and Gagnon D: Image reconstruction algorithm for a SPECT system with a convergent rotating slat collimator. *Conference Record of the 2001 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, Pacific Grove, CA, Oct. 30 - Nov. 2, 2001.*
73. Bai C, Zeng GL, and Gullberg GT: A generalized model for 3D Compton scatter in single photon emission computed tomography using slice-by-slice blurring and scatter projection rebinning. *Proceedings of the 2001 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, Pacific Grove, CA, Oct. 30 - Nov. 2, 2001.*
74. Panin VY, Zeng GL, Defrise M, and Gullberg GT: Diffusion tensor MR imaging of principal directions: a tensor tomography approach. *Proceedings of the 2001 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, Pacific Grove, CA, Oct. 30 - Nov. 2, 2001.*
75. Zeng GL, Gagnon D, Matthews CG, Kolthammer JA, and Radachy JD: Image reconstruction algorithm for a rotating slat collimator. *Conference Record of the 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, CA, Nov. 4-10, 2001.*

76. Zeng GL and Gullberg GT: A channelized Hotelling trace collimator design method based on reconstruction rather than projections. *Conference Record of the 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, CA, Nov. 4-10, 2001.
77. Gagnon D, Zeng GL, Links JM, Griesmer JJ, and Valentino FC: Design considerations for a new solid-state gamma-camera: SOLSTICE. *Conference Record of the 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, CA, Nov. 4-10, 2001.
78. Panin VY, Zeng GL, and Gullberg GT: Regularized iterative reconstruction in tensor tomography using gradient constraints. *Conference Record of the 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, CA, Nov. 4-10, 2001.
79. Zeng GL and Gagnon D: A local iterative reconstruction algorithm for planar integral data. *Conference Record of the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, VA, Nov. 13-16, vol. 2, pp. 751-755, 2002.
80. Bal G, Clackdoyle R, Zeng GL, Noo F, and Bal H: Analytical reconstruction for multi-segment slant hole SPECT. *Conference Record of the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, VA, Nov. 13-16, vol. 2, pp. 1236- 1240, 2002.
81. Zeng GL, Gullberg GT, and Debreuve E: Projection data registration for gated cardiac SPECT reconstruction. *Conference Record of the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, VA, Nov. 13-16, vol. 3, pp. 1516-1518, 2002.
82. Sorensen ES, Zeng GL, and Gullberg GT: Comparison of SPECT vs. planar imaging for lesion detection. *Conference Record of the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Norfolk, VA, Nov. 13-16, vol. 3, pp. 1731-1735, 2002.
83. Zeng GL and Gullberg GT: Cone-beam image reconstruction algorithm based on spherical harmonic expansions. *Proceedings of the 2003 International meeting on fully three- dimensional image reconstruction in radiology and nuclear medicine*, Saint Malo, France, June 29 - July 4, 2003.
84. Zeng GL and Gagnon D: SPECT imaging with a rotating slit collimator. *Proceedings of the 2003 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Saint Malo, France, June 29 - July 4, 2003.
85. Feng B, King MA, Zeng GL, Pretprou PH, Bruyant PP, Jarkewicz G, Cochon S, and Gagnon D: The estimation of attenuation maps for cardiac-SPECT using cone-beam imaging of high-energy photon through parallel-hole collimators. *Conference Record of the 2003 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Portland, OR, Oct. 22-25, 2003.
86. Zeng GL and Gagnon D: A Sparse Collimator for a Rotating Strip SPECT Camera. *Conference Record of the 2003 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Portland, OR, Oct. 22-25, 2003.
87. Hwang DS and Zeng GL: Reduction of noise amplification in SPECT using smaller detector bin size. *Conference Record of the 2004 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Rome, Italy, Oct. 19-22, 2004.

88. You J, Zeng GL, and Liang Z: FBP algorithms for attenuated fan-beam projections. *Conference Record of the 2004 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Rome, Italy, Oct. 19-22, 2004.
89. Bal G, Zeng GL, Lewitt RM, Cao Z, and Acton PD: Study of different pinhole locations for small animal tumor imaging. *Conference Record of the 2004 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Rome, Italy, Oct. 19-22, 2004.
90. Zeng GL, Gullberg GT, and Tang Q: Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction. *Conference Record of the 2004 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Rome, Italy, Oct. 19-22, 2004.
91. Feng B, Fessler JA, Pretorius PH, Borening, Beach RD, Zeng GL, and King MA: Transmission imaging with axially overlapping cone-beams. *Conference Record of the 2004 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Rome, Italy, Oct. 19-22, 2004.
92. Venkataraman R and Zeng GL: Iterative reconstruction of multiple slit collimator solstice system. *Proceedings of the 2005 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Salt Lake City, UT, July 6- July 9, 2005, pp. 101-104.
93. Zeng GL: Detector blurring and detector sensitivity compensation for a spinning slat collimator. *Proceedings of the 2005 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Salt Lake City, UT, July 6- July 9, 2005, pp. 246-249.
94. Huang Q, Zeng GL, You, J, and Gullberg GT: A cone-beam reconstruction algorithm for non-uniform attenuation projections acquired using a circular orbit trajectory. *Proceedings of the 2005 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Salt Lake City, UT, July 6- July 9, 2005, pp. 250-254.
95. Tang Q, Zeng GL, Wu J, and Gullberg GT: Exact fan-beam and cone-beam algorithms with uniform attenuation correction. *Proceedings of the 2005 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Salt Lake City, UT, July 6- July 9, 2005, pp. 255-258.
96. Bal G, Cao Z, Zeng GL, Lewitt RM, and Acton PD: A fast resolution recovery algorithm for translation based multi-pinhole SPECT. *Proceedings of the 2005 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Salt Lake City, UT, July 6- July 9, 2005, pp. 259-263.
97. Feng B, King MA, Gifford HC, PH, Borening, Zeng GL, and Fessler JA: Modeling the distance-dependent blurring in transmission imaging in the ordered-subset transmission (OSTR) algorithm by using an unmatched projector/backprojector pair. *Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Puerto Rico, Oct. 23-29, 2005.
98. Huang Q, Zeng GL, Gullberg GT: Analytical reconstruction for helical cone-beam SPECT with non-uniform attenuation correction. *Conference Record of the 2005 IEEE*

Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico, Oct. 23-29, 2005.

99. Jorgensen AK and Zeng GL: Multiplexing in multi-pinhole SPECT. *Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Puerto Rico, Oct. 23-29, 2005.
100. Zhang B and Zeng GL: Noise comparison for iterative reconstruction using a pinhole collimator and a rotating-slit collimator. *Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Puerto Rico, Oct. 23-29, 2005.
101. Tang Q, Zeng GL, and Gullberg GT: Analytic reconstruction algorithm with constant attenuation compensation using 180° acquisition data. *Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Puerto Rico, Oct. 23- 29, 2005.
102. Huang Q, You J, and Zeng GL: Fan-beam short scan SPECT with uniform attenuation. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
103. Yan Y and Zeng GL: A post-processing method for scatter and collimator blurring compensation using spatially variant point spread function. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
104. Huang Q , Zeng GL and Gullberg GT: An analytical inversion of the 180° exponential Radon transform with a numerical kernel. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
105. Tang Q and Zeng GL: An analytical algorithm for skew-slit imaging geometry with uniform attenuation correction in SPECT. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
106. Zeng GL, You J, and Huang Q: Two finite inverse Hilbert transform formulae for local tomography. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
107. Zhang B and Zeng GL: An immediate after-backprojection filtering method with blob-shaped window functions for voxel-based iterative reconstruction. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
108. Jing F and Zeng GL: A Radon space spline interpolation method for circular orbit cone beam reconstruction. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
109. Hwang D and Zeng GL: One-step backprojection algorithm for computed tomography. *Conference Record of the 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, Oct. 31- Nov. 4, 2006.
110. Huang Q, You J, Zeng GL, and Gullberg GT: Exact reconstruction on pi-lines from uniformly attenuated SPECT projection data. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 96-99.

111. Zhang B and Zeng GL: High-sensitivity SPECT imaging using large collimator holes and geometric blurring compensation. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 178-181.
112. Yan Y and Zeng GL: A post-processing method for scatter compensation in SPECT. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 186-189.
113. You J, Zeng GL and Huang Q: Finite inversion of the weighted Hilbert transform. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 233-236.
114. Piatt JA and Zeng GL: Estimation of skew-slit SPECT acquisition geometry using a single point source. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 281-284.
115. Tang Q, You J, Zeng GL and Gullberg GT: Analytical image reconstruction for convergent-beam non-circular orbit attenuation correction. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 293-296.
116. Zeng GL and Huang Q: Compensation for collimator blurring using rotational and axial convolution. *Proceedings of the 2007 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Lindau, Germany, July 9-13, 2007, pp. 329-332.
117. Zeng GL: Uniform attenuation correction using the frequency-distance principle. *Conference Record of the 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Honolulu, Oct. 30- Nov. 3, 2007.
118. Zeng GL: List-mode data reconstruction via the finite Hilbert transform of the derivative of the backprojection. *Conference Record of the 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Honolulu, Oct. 30- Nov. 3, 2007.
119. Zhang B and Zeng GL: High-sensitivity SPECT imaging using large collimator holes and geometric blurring compensation. *Conference Record of the 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Honolulu, Oct. 30- Nov. 3, 2007.
120. Zeng GL and Piatt JA: Backprojection-based imaging geometric parameter estimation. *30th annual International IEEE EMBS Conference*, Vancouver, BC, Canada, Aug. 20-24, pp. 458-461, 2008. PMID: 19162692
121. Zeng GL: Multi-divergent-beam stationary cardiac SPECT. *30th annual International IEEE EMBS Conference*, Vancouver, BC, Canada, Aug. 20-24, pp. 5782-5785, 2008. PMID: 19164031
122. Gullberg GT, Huang Q, You J, and Zeng GL: Exact reconstruction from uniformly attenuated helical cone-beam projections in SPECT, Lawrence Berkeley National Laboratory Publication, LBNL-1359E, 2008.

123. Zeng GL and Gullberg GT: Exact iterative reconstruction for the interior problem. *Proceedings of the 2009 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Beijing, China, September 5-10, 2009, pp. 106-109.

124. Zeng GL and Hawman EG: Stationary multi-divergent-beam or multi-slannt-parrallel-beam cardiac SPECT. *Proceedings of the 2009 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Beijing, China, September 5-10, 2009, pp. 354-357.

125. Zeng GL, Jing F, Huang Q, You J, and Gullberg GT: A derivative-backprojection algorithm for non-uniform attenuated SPECT data. *Conference Record of the 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Orlando, Oct. 25- 31, 2009.

126. Zeng GL: Rotational convolution and SPECT post processing. *Conference Record of the 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Orlando, Oct. 25- 31, 2009.

127. Zeng GL and Gullberg GT: Null-space function estimation for the three-dimensional interior problem. *Proceedings of the 2011 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Potsdam, Germany, July 11-15, 2011, pp. 241-245.

128. Mao Y and Zeng GL: ML-EM algorithm with special weighting for zero-valued projections. *Proceedings of the 2011 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Potsdam, Germany, July 11-15, 2011, pp. 278-281.

129. Mao Y and Zeng GL: Feasibility study of segmented-parallel-hole collimator for stationary cardiac SPECT. *Proceedings of the 2011 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Potsdam, Germany, July 11-15, 2011, pp. 423-426.

130. Zeng GL, Kadrmas DJ, and Gullberg GT: Fourier domain closed-form formulas for estimation of kinetic parameters in multi-compartment models. *Conference Record of the 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Valencia, Spain, Oct. 23- 30, 2011.

131. Zeng GL: View-based noise modeling in the filteredbackprojection MAPalgorithm. *The 2nd International Conference on Image Formation in X-Ray Computed Tomography*, pp. 103-106, Salt Lake City, UT, June 2012.

132. Zeng GL and Zamyatin A: Ray-by-ray noise weighting in a filtered backprojection algorithm. *Conference Record of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Anaheim CA, Oct. 31- Nov. 3, 2012.

133. Mao Y and Zeng GL: Impact of truncation to the reconstruction with a small number of projections. *Conference Record of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Anaheim CA, Oct. 31- Nov. 3, 2012.

134. Zeng GL, Hernandez AM, Kadrmas DJ, and Gullberg GT: Closed-form kinetic parameter estimation using wavelets. *Conference Record of the 2012 IEEE Nuclear*

Science Symposium and Medical Imaging Conference, Anaheim CA, Oct. 31- Nov. 3, 2012.

135. Feng B and Zeng GL: Modeling of pixelated detector in SPECT pinhole reconstruction. *Conference Record of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seoul, Korea, Oct. 27- Nov. 2, 2013.
136. Zeng GL and Zamyatin A: Iterative TV reconstruction vs. weighted FBP reconstruction. *Conference Record of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seoul, Korea, Oct. 27- Nov. 2, 2013.
137. Zeng GL, Li Y and Zamyatin A: A mathematical proof of a noise weighted FBP reconstruction algorithm. *Conference Record of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seoul, Korea, Oct. 27- Nov. 2, 2013.
138. Zeng GL: Noise weighted spatial domain FBP algorithm. *The 3rd International Conference on Image Formation in X-Ray Computed Tomography*, pp. 37-43, Salt Lake City, UT, June 2014.
139. Zeng GL: Comparison of FBP and iterative algorithms with non-uniform angular sampling, *Conference Record of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seattle, WA, Nov. 2014.
140. Zeng GL: Re-visit of the ramp filter, *Conference Record of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Seattle, WA, Nov. 2014.
141. Zeng GL: Fan-beam short-scan FBP algorithm is not exact, *Proceedings of the 2015 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, New Port, RI, June 1-4, 2015, pp. 427-432.
141. Zeng GL and Li Y: SPECT algorithm envisions dc-less MRI, *Proceedings of the 2015 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, New Port, RI, June 1-4, 2015, pp. 328-332.
143. Zeng GL: The ML-EM algorithm is not optimal for Poisson noise, *Conference Record of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, CA, Nov. 2015.
144. Zeng GL: An extended Bayesian-FBP algorithm, *Conference Record of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference*, San Diego, CA, Nov. 2015.
145. Zeng GL and Wang W: Noise weighting with an exponent for transmission CT. *The 4th International Conference on Image Formation in X-Ray Computed Tomography*, pp. 267-270, Bamberg, Germany, July 2016.
146. Zeng GL and Wang W: On approximation of compound Poisson by Poisson. *The 4th International Conference on Image Formation in X-Ray Computed Tomography*, pp. 85-88, Bamberg, Germany, July 2016.
147. Zeng GL: Noise-weighted FBP algorithm for uniformly attenuated SPECT projections, *Conference Record of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Strasbourg, France, Nov. 2016.

148. Zeng GL: A fast method to emulate an iterative POCS image reconstruction algorithm, *Proceedings of the 2017 International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine*, Xi'an, China , June 19-23, 2017.

149. Zeng GL: Fourier-domain analysis of the iterative Landweber algorithm, *Conference Record of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Atlanta, GA, Nov. 2017.

150. Zeng GL: Machine learning: Any image reconstruction algorithm can learn by itself, *Conference Record of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Atlanta, GA, Nov. 2017.

151. Zeng GL and Frazier RL: Noise analysis of iterative algorithm for lower iteration number and weighting effects, *Conference Record of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Atlanta, GA, Nov. 2017.

152. Zeng GL: A myth of iterative image reconstruction algorithms, *Conference Record of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference*, Atlanta, GA, Nov. 2017.

153. Zeng GL: Emission EM look-alike algorithms for x-ray CT and other applications, *The 5th International Conference on Image Formation in X-Ray Computed Tomography*, pp. 260-263, Salt Lake City, UT, May 2018.

154. Zeng GL: Determination of algorithm parameters by using input/output image pairs, *The 5th International Conference on Image Formation in X-Ray Computed Tomography*, pp. 403-407, Salt Lake City, UT, may 2018.

155. Zeng GL: Extension of emission EM look-alike algorithms to Bayesian algorithms, Proceedings Volume 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine; 110720N (2019) <https://doi.org/10.1117/12.2534973> Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2019, Philadelphia, United States

156. Zeng GL: Green's one-step-late algorithm doses not work for SPECT with attenuation correction, Proceedings Volume 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine; 110722A (2019) <https://doi.org/10.1117/12.2534946>

157. Zeng GL: There is no stopping rule optimal for all lesions, *IEEE MIC*, M06-200, Manchester, UK, 2019

158. Zeng GL: Sparse-view tomography via displacement vector field interpolation, *IEEE MIC*, M06-201, Manchester, UK, 2019

159. Zeng GL: Projection-domain iteration to estimate un-reliable measurements (metal artifacts), *The 6th International Conference on Image Formation in X-Ray Computed Tomography*, August 2020.

160. Zeng GL: A pre-filter that incorporates the noise model, *The 6th International Conference on Image Formation in X-Ray Computed Tomography*, August 2020.

161. Zeng GL: Analytic continuation and incomplete data tomography, *Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*, 2021.
<https://arxiv.org/ftp/arxiv/papers/2110/2110.04143.pdf>
162. Zeng GL: Reducing metal artifacts by restricting negative pixels, *Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*, 2021.
<https://arxiv.org/ftp/arxiv/papers/2110/2110.04143.pdf>
163. Zeng GL: A projection-domain iterative algorithm for metal artifact reduction by minimizing the total variation norm and the negative pixel energy, IEEE MIC, 2021.
164. Zeng GL: Iterative analytic extension in tomographic imaging, IEEE MIC, 2021.

F. Abstracts

1. Gullberg GT, Zeng GL and Tsui BMW: An iterative cone beam reconstruction algorithm with geometric point response correction. *J. Nucl. Med.* vol. 31, no. 5, May 1990, p. 867.
2. Gullberg GT, Christian PE, Zeng GL, Datz FL and Morgan HT: Cardiac SPECT imaging with cone beam collimators. *J. Nucl. Med.* vol. 31, no. 5, May 1990, p. 739.
3. Zeng GL, Tung CH and Gullberg GT: New approaches to reconstructing truncated projections in cardiac fan beam and cone beam tomography. *J. Nucl. Med.*, vol. 31, no. 5, May 1990, p. 867.
4. Clack R, Zeng GL, Gullberg GT and Christian PE: Cone beam SPECT of the brain using two orbits. *J. Nucl. Med.*, vol. 31, no. 5, May 1990, p. 770.
5. Zeng GL and Gullberg: A cone beam reconstruction algorithm for perpendicular orbits. *J. Nucl. Med.* vol. 32, no.5, May 1991, p. 956.
6. Gullberg GT and Zeng GL: Cardiac SPECT cone beam iterative reconstruction with attenuation and geometric point response correction. *J. Nucl. Med.* vol. 32, no. 5, May, 1991, p. 916.
7. Tung CH, Gullberg GT, Zeng GL, Christian PE, Datz FL, and Morgan HT: Simultaneous transmission and emission converging tomography with a multi-detector SPECT system. *J. Nucl. Med.* vol. 32, no.5, May 1991, pp. 955-956.
8. Tung CH, Gullberg GT, Zeng GL, Christian PE, Datz FL, and Morgan HT: A method for attenuation correction using a truncated transmission scan. *J. Nucl. Med.* vol. 32, no.5, May 1991, pp. 1066-1067.
9. Terry JA, Tsui BMW, Perry JR, Gullberg GT, and Zeng GL: A comparison myocardial defect detection in Tl-201 SPECT using parallel-hole, fan beam and cone beam collimators. *J. Nucl. Med.* vol. 32, no.5, May 1991, p. 946.
10. Gullberg GT and Zeng GL: A reconstruction algorithm using singular value decomposition to compensate for constant attenuation in single photon emission computed tomography. *J. Nucl. Med.* vol. 33, no.5, May 1992, p. 831.
11. Zeng GL, Gullberg GT, Jaszczak RJ, and Li J: Fan beam convolution algorithms for variable focal length collimators. *J. Nucl. Med.* vol. 33, no.5, May 1992, p. 891.

12. Zeng GL, Gullberg GT, Christian PE, Datz FL, and Morgan HT: Implementation of cone beam tomography on a dual-detector SPECT system. *J. Nucl. Med.* vol. 33, no.5, May 1992, p. 892.
13. Gullberg GT, Tung C-H, Zeng GL, Christian PE, Datz FL, and Morgan HT: Simultaneous transmission and emission computed tomography using a three-detector SPECT system. *J. Nucl. Med.* vol. 33, no.5, May 1992, p. 901.
14. Zeng GL and Gullberg GT: An iterative reconstruction algorithm with natural pixel basis. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 19P.
15. Gullberg GT, Zeng GL, Christian PE, Datz FL, and Morgan HT: Correction for attenuation and geometric point response distortions in clinical cardiac SPECT studies. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 30P.
16. Datz FL, Gullberg GT, Christian PE, Zeng GL, Hsieh YL, Tung CH, Valdivia S, Ahluwalia R, Anderson CM, and Morton KA: ROC comparison of simultaneous transmission emission tomography to routine SPECT for diagnosis of coronary artery disease on thallium imaging. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 71P.
17. Weng Y, Zeng GL, Clack R, Gullberg GT and Morgan HT: Cone-beam tomography using orbits which satisfy the data sufficiency condition for a SPECT system with two opposing detectors. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 80P.
18. Zeng GL and Gullberg GT: A backprojection filtering algorithm for a variable focal length collimator. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 81P.
19. Hsieh YL, Zeng GL, Gullberg GT, and Morgan HT: A method for estimation the parameters of a fan-beam and cone-beam SPECT system using five point sources. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 191P.
20. Datz FL, Christian PE, Ahluwalia R, Gullberg GT, Zeng GL, Valdivia S, and Morton KA: Comparison of 3-D surface and transparency renderings to SPECT tomographic slice images for the detection of coronary artery disease. *J. Nucl. Med.* vol. 34, no.5, May 1993, p. 196P.
21. Zeng GL and Gullberg GT: Evaluation of cone-beam data sufficiency and reconstruction variance. *J. Nucl. Med.* vol. 35, no.5, May 1994, p. 5P.
22. Gullberg GT, Huesman RH, Zeng GL, and Smith AM: Efficient Estimation of dynamic SPECT Kinetic parameters using singular value decomposition. *J. Nucl. Med.* vol. 35, no.5, May 1994, p. 18P.
23. Datz FL, Christian PE, Gullberg GT, Zeng GL, Welch A, Tung CH, Burner TA, Morgan H: Use of Gd-153 for simultaneous transmission emission tomography attenuation correction of Tc-99m sestamibi SPECT cardiac studies. *J. Nucl. Med.* vol. 35, no.5, May 1994, p. 91P.
24. Zeng GL, Christian PE, Gullberg GT, and Morgan HT: A new window function that eliminates the artifactual decreased myocardial wall uptake. *J. Nucl. Med.* vol. 36, no.5, May 1995, p. 30P.
25. Zeng GL, Gullberg GT, Christian PE, and Morgan HT: Reconstruction of SPECT FDG image using geometric point response correction. *J. Nucl. Med.* vol. 36, no.5, May 1995, p. 167P.

26. Zeng GL and Gullberg GT: Valid backprojection matrices which are not the transpose of the projection matrix. *J. Nucl. Med.* vol. 37, no.5, May 1996, p. 206P.
27. DiBella EVR, Trisjono F, and Zeng GL: Recursive blur models for SPECT depth-dependent response. *J. Nucl. Med.* vol. 37, no.5, May 1996, p. 153P.
28. Miller S, Maniawski P, Zeng GL, and Krenning E: Comparison of Tc-99 Tetrofosmin and 511 keV collimated myocardial perfusion SPECT — the effect of collimator response correction. Supplement to Journal of Nuclear Cardiology, vol. 4, no. 1 (part 2), January/ February 1997, p. S115.
29. Basko R, Gullberg GT, and Zeng GL: Using two one-dimensional Compton cameras of finite extent for transaxial tomography. *J. Nucl. Med.* vol. 38, no. 5, May 1997, p. 32P.
30. Zeng GL and Gullberg GT: On using an unmatched projector and backprojector pair in an iterative algorithm. *J. Nucl. Med.* vol. 38, no. 5, May 1997, p. 58P.
31. Zeng GL and Gullberg GT: Iterative ML-EM cone-beam reconstructions for SPECT attenuation correction with application to various non-planar orbits. *J. Nucl. Med.* vol. 38, no. 5, May 1997, p. 58P.
32. Hsieh YL, Zeng GL, and Gullberg GT: Reconstruction of truncated fan beam transmission data using generalized natural pixel basis. *J. Nucl. Med.* vol. 38, no. 5, May 1997, p. 101P.
33. Bai C, Zeng GL, and Gullberg GT: Evaluation of small 2D convolution kernels for slice-by-slice blurring model used to correct the geometric point response blurring in 511 keV SPECT. *J. Nucl. Med.* vol. 38, no. 5, May 1997, p. 214P.
34. Huesman RH, Reutter BW, Zeng GL, and Gullberg GT: Kinetic parameter estimation from SPECT projection measurements. *J. Nucl. Med.* vol. 38, no. 5, May 1997, p. 222P.
35. Zeng GL and Gullberg GT: Helical SPECT using axially truncated data for parallel, cone, fan, varying-cone, and astigmatic geometries. *J. Nucl. Med.* vol. 39, no. 5, May 1998, p. 78P.
36. Bai C, Zeng GL and Gullberg GT: A fan-beam slice-by-slice blurring model for scatter, geometric point response, and attenuation correction in SPECT using the iterative OS-EM algorithm. *J. Nucl. Med.* vol. 39, no. 5, May 1998, p. 120P.
37. Panin VY, Zeng GL and Gullberg GT: Nonuniform attenuation correction using only emission data with data consistency conditions and a “knowledge set.” *J. Nucl. Med.* vol. 39, no. 5, May 1998, p. 177P.
38. Zeng GL, Gullberg GT, Gagnon D, Tung CH, and Christian PE: High energy cone-beam transmission imaging with parallel collimators. *J. Nucl. Med.* vol. 40, no. 5, May 1999, p. 34P.
39. Bai C, Zeng GL, and Gullberg GT: A slice-by-slice blurring model for scatter compensation in parallel and converging beam SPECT. *J. Nucl. Med.* vol. 40, no. 5, May 1999, p. 114P.
40. Zeng GL and Gullberg GT: Scintimammography versus SPECT mammography. *J. Nucl. Med.* vol. 40, no. 5, May 1999, p. 284P.

41. Bal G, Clackdoyle R, and Zeng GL: Evaluation of different three-dimensional image reconstruction methods used in rotating slant-hole (RSH) SPECT. *J. Nucl. Med.* vol. 40, no. 5, May 1999, p. 284P.
42. Panin VY, Zeng GL, and Gullberg GT: Registration problem in attenuation map estimation using only emission data with data consistency conditions. *J. Nucl. Med.* vol. 40, no. 5, May 1999, p. 294P.
43. Kholmovski EG, Panin VY, Alexander AL, and Zeng GL: MAP-EM method for angularly undersampled projection-reconstruction CE-MRA imaging, *The 8th Scientific Meeting and Exhibition*, International Society for Magnetic Resonance in Medicine, Poster no. 1729, April 2000.
44. Hasan KM, Parker DL, Roberts J, Alexander AL, and Zeng GL: Comparison of optimization procedures for diffusion-tensor encoding directions, *The 8th Scientific Meeting and Exhibition*, International Society for Magnetic Resonance in Medicine, Poster no. 792, April 2000.
45. Zeng GL, Gullberg GT, and Christian PE: A feasibility study of helical whole-body SPECT. *J. Nucl. Med.* vol. 41, no. 5, May 2000, p. 22P.
46. Christian PE, Elsamaloty HM, Zeng GL, Kadrmas DJ, Miller CM, and Gullberg GT: Observer comparison of attenuation correction and scatter compensation images in myocardial perfusion imaging with ^{99m}Tc Sestamibi. *J. Nucl. Med.* vol. 41, no. 5, May 2000, p. 99P.
47. Panin VY, Zeng GL, and Gullberg GT: Attenuation map and emission activity reconstruction from truncated SPECT emission data. *J. Nucl. Med.* vol. 41, no. 5, May 2000, p. 134P.
48. Bal G, Clackdoyle R, Kadrmas DJ, Zeng GL, and Christian PE: Characterization of and compensation for the asymmetric detector response function in rotating slant-hole SPECT. *J. Nucl. Med.* vol. 41, no. 5, May 2000, p. 178P.
49. Panin VY, Zeng GL, and Gullberg GT: Attenuation map and emission activity reconstruction from emission data using discrete data consistency conditions. *J. Nucl. Med.* vol. 42, no. 5, May 2001, p. 8P.
50. Bai C, Zhao Z, Shao, L, Zeng GL, and Gullberg GT: The effect of using 2D and 3D regularization on Bayesian emission reconstruction of cardiac SPECT images. *J. Nucl. Med.* vol. 42, no. 5, May 2001, p. 138P.
51. Zeng GL and Gagnon D: Single photon emission local tomography. *J. Nucl. Med.* vol. 43, no. 5, May 2002, p. 145P.
52. Panin VY, Zeng GL, Defrise M, and Gullberg GT: Diffusion Tensor MR Imaging of Principal Directions with Known Eigenvalues: A Tensor Tomography versus Conventional Approach, *The 10th Scientific Meeting and Exhibition*, International Society for Magnetic Resonance in Medicine, no. 2436, May 2002.
53. Panin VY, Zeng GL, Lee JN, and Gullberg GT: Iterative reconstruction in diffusion tensor tomography using total variation regularization on eigenvalue and tensor component images, *The 10th Scientific Meeting and Exhibition*, International Society for Magnetic Resonance in Medicine, no. 741, May 2002.

54. Zeng GL and Gullberg GT: Cardiac SPECT using combined cone-beam and fan-beam collimation. *J. Nucl. Med.* vol. 44, no. 5, May 2003, p. 63P.
55. Zeng GL: Nonstationary noise due to the homogeneity property of the ramp filter. *SIAM Conference on Image Science*, May 3-5, 2004, p. 46.
- 56: Lee Z, Koc ON, Wojtkiewicz GR, Maitra B, Faulhaber PF, Gerson SL, Zeng GL, and Gagnon D: Imaging mesenchymal stem cell transplantation on small animal models. *Society of Nuclear Medicine's 51st Annual Meeting Abstract*, 2004.
57. Zeng GL and Hwang D: Point source transmission measurement without using detector collimator. *Society of Nuclear Medicine's 51st Annual Meeting Abstract*, Philadelphia, PA, June, 2004.
58. Zhang B and Zeng GL: Noise propagation comparison for iterative reconstruction using line-integral and planar-integral data. *Society of Nuclear Medicine's 51st Annual Meeting Abstract*, Philadelphia, PA, June, 2004.
59. Venkataraman R and Zeng GL: SPECT imaging with a rotating multi-slit collimator. *Society of Nuclear Medicine's 51st Annual Meeting Abstract*, Philadelphia, PA, June, 2004.
60. Zeng GL and Earl RD: Optimization of the acquisition time profile for a planar integral measurement. *Society of Nuclear Medicine's 52nd Annual Meeting Abstract*, Toronto, ON, Canada, June, 2005.
61. Zeng GL and You J: Range conditions and denoising. *Society of Nuclear Medicine's 52nd Annual Meeting Abstract*, Toronto, ON, Canada, June, 2005.
62. Hwang DS and Zeng GL: A new simple iterative reconstruction algorithm for SPECT transmission measurement. *Society of Nuclear Medicine's 52nd Annual Meeting Abstract*, Toronto, ON, Canada, June, 2005.
63. Zhang B and Zeng GL: Noise behavior analysis for iterative reconstruction using a rotating multi-slit collimator. *Society of Nuclear Medicine's 52nd Annual Meeting Abstract*, Toronto, ON, Canada, June, 2005.
64. Qi Y, Tsui BMW and Zeng GL: Optimizing collimator designs for small animal SPECT imaging using a scintillation camera. *Society of Nuclear Medicine's 52nd Annual Meeting Abstract*, Toronto, ON, Canada, June, 2005.
65. Zhang B and Zeng GL: Comparison study of iterative reconstruction from truncated projections in 2D and 3D imaging. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
66. Zeng GL, Huang Q, Tang Q, and Wright WJ: Skew-slit collimator for small animal SPECT. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
67. Hwang D and Zeng GL: Reduction of staircasing artifacts in TV-EM using bootstrap sinograms. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.

68. Huang Q, Zeng GL, and You J: A numerical solution to the fan-beam short scan SPECT with uniform attenuation. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
69. Tang Q and Zeng GL: A frequency domain cone-beam algorithm for circular orbit geometry. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
70. Hwang D and Zeng GL: SPECT image reconstruction using sub-sinogram. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
71. Allred RJ and Zeng GL: Partitioned image filtering: a nonlinear filtering technique for the reduction of Gibbs artifacts. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
72. Yan Y and Zeng GL: Estimation of attenuation map with SPECT emission data only. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
73. Jorgensen AK and Zeng GL: Condition-number-based evaluation of multi-pinhole SPECT imaging. *Society of Nuclear Medicine's 53rd Annual Meeting Abstract*, San Diego, CA, June, 2006.
74. Zeng GL: First phantom experiment of skew-slit SPECT. *Society of Nuclear Medicine's 54th Annual Meeting Abstract*, Washington, DC, *J. Nucl. Med.*, vol. 48, p. 93P, June, 2007.
75. Tang Q, You J, and Zeng GL: Analytical image reconstruction for convergent-beam non- circular orbit with uniform attenuation correction. *Society of Nuclear Medicine's 54th Annual Meeting Abstract*, Washington, DC, *J. Nucl. Med.*, vol. 48, p. 100P, June, 2007.
75. Zhang B and Zeng GL: High-sensitivity SPECT imaging using large collimator holes and geometric blurring compensation. *Society of Nuclear Medicine's 54th Annual Meeting Abstract*, Washington, DC, *J. Nucl. Med.*, vol. 48, p. 99P, June, 2007.
76. Yan Y and Zeng GL: A new approach to estimate the 2D-PSF in SPECT. *Society of Nuclear Medicine's 54th Annual Meeting Abstract*, Washington, DC, *J. Nucl. Med.*, vol. 48, p. 419P, June, 2007.
77. Zeng GL: Non-iterative correction for collimator blurring. *Society of Nuclear Medicine's 54th Annual Meeting Abstract*, Washington, DC, *J. Nucl. Med.*, vol. 48, p. 420P, June, 2007.
78. Zeng GL and Stevens AM: Multi-divergent-hole cardiac SPECT. *Society of Nuclear Medicine's 56th Annual Meeting Abstract*, Toronto, Canada, *J. Nucl. Med.*, vol. 50, June, 2009.
79. Zeng GL and Gullberg: Exact emission SPECT reconstruction with truncated transmission data. *Society of Nuclear Medicine's 56th Annual Meeting Abstract*, Toronto, Canada, *J. Nucl. Med.*, vol. 50, June, 2009.
80. de Gennaro GG and Zeng GL: A post-processing method for spatially variant point spread function compensation. *BMES 2009 Annual Fall Scientific Meeting*, Pittsburgh, PA, Oct. 7- 10, 2009.

81. Zeng GL: Image reconstruction without the Gibbs artifacts. *Society of Nuclear Medicine's 57th Annual Meeting Abstract*, Salt Lake City, *J. Nucl. Med.*, vol. 51, p. 263P, June, 2010.
82. Mao Y and Zeng GL: Segmented-parallel-beam stationary cardiac SPECT. *Society of Nuclear Medicine's 58th Annual Meeting Abstract*, San Antonio, TX, *J. Nucl. Med.*, vol. 52, p. 462P, June, 2011.
83. Zeng GL, Kadrmas DJ and Gullberg GT: Closed-form formulas for estimation for kinetic parameters in one- and multi-compartment models. *Society of Nuclear Medicine's 58th Annual Meeting Abstract*, San Antonio, *J. Nucl. Med.*, vol. 52, p. 466P, June, 2011.
84. Mao Y and Zeng GL: The effects of the weighting of zero-valued projections in MLEM algorithm, *Society of Nuclear Medicine's 58th Annual Meeting Abstract*, San Antonio, TX, *J. Nucl. Med.*, vol. 52, p. 478P, June, 2011.
85. Zeng GL and Dibella EVR: Non-iterative Bayesian reconstruction algorithm for undersampled MRI data, *ISMRM*, Paper # 2634, Salt Lake City, Aril, 2013.
86. Mao Y, Yu Z, and Zeng GL: Monte Carlo simulation of stationary cardiac SPECT using two segmented slant-hole collimators, *Society of Nuclear Medicine's 62nd Annual Meeting Abstract*, Baltimore, VA, June, 2015.

10. TEACHING EXPERIENCES

Courses Taught

Mathematics: Calculus

Xidian University, Xi'An, P. R. China, Spring, Fall, 1982, Spring, Fall, 1984

Mathematics: Linear Algebra

Xidian University, Xi'An, P. R. China, Spring, 1983

Mathematics: Complex Analysis

Xidian University, Xi'An, P. R. China, Fall, 1983

Electrical and Computer Engineering 206: Electronics Laboratory

University of New Mexico, 1986-1988

Electrical and Computer Engineering 513: Modern Filter Theory and Design

University of New Mexico, Fall 1987

Bioengineering 652/ Electrical Engineering 602, Three-Dimensional Reconstruction Techniques in Medical Imaging.

University of Utah, Winter 1992, Spring 1994, Winter 1996, and Winter 1998

Bioengineering 651/ Electrical Engineering 601, Advanced Magnetic Resonance Imaging (Computer Simulation Labs).

University of Utah, Winter 1993 and Winter 1995

Bioengineering 552 (6320)/ Electrical and Computer Engineering 6120, Physics of Nuclear Medicine and Magnetic Resonance

University of Utah, Summer 1993, Spring 1997, Summer 1997, Fall 1998, Summer 1999, Summer 2001, Summer 2003, and summer 2005.

Bioengineering 551 (6310), Physics of X-Ray and Ultrasound Radiology

University of Utah, Summer 1994, Fall 1999

Electrical and Computer Engineering 3510, Introduction to Feedback Systems, University of Utah, Spring 2000, Spring 2001, and Spring 2002

Electrical Engineering 5530, 5540 and 6961, Digital Signal Processing, University of Utah, Fall 2000, and Fall 2002

Electrical Engineering 5510, Random Processes, University of Utah, Fall 2001, and Fall 2002

Electrical and Computer Engineering 1020 Problem Solving with Matlab, University of Utah, Spring 2003, Summer 2003, Spring 2010

Electrical and Computer Engineering 1000 Introduction to Electrical and Computer Engineering, University of Utah, Summer 2003

Bioengineering 5101 Bioinstrumentation, University of Utah, Fall 2005, Fall 2006, Fall 2007, Fall 2008

Bioengineering 5001 Biophysics, University of Utah, Spring 2006, Spring 2007

Electrical and Computer Engineering 5570 Control of Electric Motors, University of Utah, Fall 2007, Fall 2008

Teaching radiology residents: University of Utah, July 2006~2013

Teaching cardiology residents: University of Utah, February 2009~2011

Bioengineering 5401 Medical Imaging Systems, University of Utah, Fall 2009

Electrical and Computer Engineering 3500 Fundamentals of Signals and Systems, University of Utah, Fall 2010, Fall 2011, Fall 2012

Bioengineering 1102 Fundamentals of Bioengineering II, University of Utah, Spring 2011

Zhejiang University, China, Image Reconstruction, Fall 2011

Tsinghua University, China, Image Reconstruction, Summer 2013

Weber State University, Electrical and Computer Engineering 3210 Signals and Systems, Fall 2013, Fall 2014

Weber State University, Electrical and Computer Engineering 4100 Control Systems, Fall 2013, Fall 2014, Fall 2015, Fall 2016, Fall 2017

Weber State University, Electrical and Computer Engineering 1000 Introduction to Electronics Engineering, Spring 2014, Spring 2015, Fall 2015

Weber State University, Electrical and Computer Engineering 2260 Fundamentals of Electric Circuits, Spring 2014, Spring 2016

Weber State University, Electrical and Computer Engineering 1270 Introduction to Electric Circuits, Fall 2015

Weber State University, Electrical and Computer Engineering 4510 Power Systems, Spring 2014, Spring 2017

Weber State University, Electrical and Computer Engineering 6210/4210 Digital Signal Processing, Spring 2015, Spring 2016

Weber State University, Electrical and Computer Engineering 2700 Digital Circuits, Spring 2015, Spring 2017, Fall 2017, Spring 2018, Spring 2019

Weber State University, Electrical and Computer Engineering 5220/6220 Image Processing, Fall 2016, Fall 2018

Weber State University, Electrical and Computer Engineering 5420/6420 Digital Communications, Fall 2018

Weber State University, Engineering 1000 Introduction to Engineering, Spring 2019

Utah Valley University, Electrical and Computer Engineering 2700, Digital Circuits I, Fall 2019, Spring 2020

Utah Valley University, Electrical and Computer Engineering 4900, Electrical Engineering Capstone I, Fall 2019

Utah Valley University, Electrical and Computer Engineering 4950, Electrical Engineering Capstone II, Spring 2020

Utah Valley University, Electrical and Computer Engineering 3350 Control Systems, Spring 2020

Utah Valley University, Computer Science 3310 Analysis of Algorithms, Fall 2019, Spring 2020, Fall 2020, Spring 2021, Spring 2022

Utah Valley University, Computer Science 3240 Discrete Mathematical Structures II
(Theory of Computation), Fall 2020, Spring 2021, Fall 2021, Spring 2022

Utah Valley University, Computer Science 2300 Discrete Mathematical Structures I, Spring 2021

Utah Valley University, Computer Science 6150 Advanced Algorithms, Fall 2021

Utah Valley University, Computer Science 6480 Advanced Machine Learning, Spring 2022

11. PATENTS

1. Zeng GL, Gullberg GL, and Morgan HT: Cone Beam Reconstruction Using Combined Circle and Line Orbits, U.S. Patent No. 5,170,439, December 8, 1992.
2. Gullberg GT, Morgan HT, Tung CH, Zeng GL, and Christian PE: Simultaneous Transmission and Emission Converging Tomography, U. S. Patent No. 5,210,421, May 11, 1993.
3. Gullberg GT, Morgan HT, Tung CH, Zeng GL, and Christian PE: Simultaneous Transmission and Emission Converging Tomography, U. S. Patent No. 5,338,936, August 16, 1994.
4. Weng Y, Zeng GL, and Gullberg GT: Cone Beam Reconstruction Using Helical Data Collection Paths, U.S. Patent No. 5,404,293, April 4, 1995.
5. Hsieh Y-L, Zeng GL, and Gullberg GT: Electronic Calibration of Single Photon Emission Computed Tomography Camera, U.S. Patent No. 5,481,115, January 2, 1996.
6. Gullberg GT and Zeng GL: Displaced Center-of-Rotation Fan-Beam Tomography for Cardiac Imaging, U.S. Patent No. 5,532,490, July 2, 1996.
7. Zeng GL and Gullberg GT: Rotating and Warping Projector/Backprojector for Converging- Beam Geometries, U.S. Patent No. 5,559,335, September 24, 1996.
8. Gullberg GT and Zeng GL: Three-dimensional SPECT Reconstruction of Combined Cone Beam and Fan Beam Data, U.S. Patent No. 5,565,684, October 15, 1996.
9. Gullberg GT, Zeng GL, and Basko R: Image Reconstruction from V-Projections Acquired by Compton Camera, U.S. Patent No. 5,841,141, November 24, 1998.
10. Basko R, Zeng GL, and Gullberg GT: Image Reconstruction For Compton Camera Including Spherical Harmonics, U.S. Patent No. 5,861,627, January 19, 1999.
11. Zeng GL, Gullberg GT, and Bai C: A Projector/Backprojector With Slice-to-Slice Blurring for Efficient 3D Scatter Modeling, U.S. Patent No. 6,381,349, April 30, 2002.
12. Panin VY, Zeng GL, and Gullberg GT: Method and Apparatus for Image Reconstruction Using a Knowledge Set, U.S. Patent No. 6,539,103, March 25, 2003.
13. Zeng GL: Variable Angular Sampling Rate for Rotating Slat-Hole Detectors of Gamma Cameras, U.S. Patent No. 6,593,576, July 15, 2003.

14. Zeng GL: Correction for Depth-Dependent Sensitivity in Rotating Slat-Collimated Gamma Camera, U.S. Patent No. 6,603,123, August 5, 2003.
15. Zeng GL: Focused Rotating Slat-Hole for Gamma Cameras, U.S. Patent No. 6,627,893, September 30, 2003.
16. Zeng GL: Correction for Depth-Dependent Sensitivity in Rotating Slat-Collimated Gamma Camera, U.S. Patent No. 6,762,413, July 13, 2004.
17. Zeng GL: Skew Slit Collimator and Method of Use Thereof, U.S. Patent 7,388,207, June 17, 2008.
18. Zeng GL: System and methods for deblurring data corrupted by shift variant blurring, U.S. Patent 7,860,333, December 28, 2010.
19. Zeng GL: System and methods for deblurring data corrupted by shift variant blurring [Continuation of US 7,860,333], U.S. Patent 8,218,889 B2, July 10, 2012.
20. Zeng GL: Collimator and related methods, U.S. Patent 8,178,845 B2, May 15, 2012.
21. Hawman E and Zeng GL: Composite segment collimators for SPECT without dead zones, [U.S. Patent 8,476,610](#), July 2, 2013.
22. Zeng GL: Filtered backprojection image reconstruction with characteristics of an iterative MAP algorithm, [U.S. Patent No. 8,908,942](#), December 9, 2014
23. Zeng GL and Zamyatin AA: Method and system for generating image using filtered backprojection with noise weighting and or prior in, [CN103732147A](#), [EP2881039A1](#), [US20140029819](#), [WO2014021349A1](#)

12. PROFESSIONAL ACTIVITIES AND HONORS

1. National and International Committee Activities:

ABET Program Evaluator (representing IEEE), 2015 – present

ABET on-site visit 2015: California State University (Chico, CA)

ABET on-site visit 2016: South Dakota School of Mines and Technology (Rapid City, SD)

ABET on-site visit 2017: University of Maryland (Baltimore, MD)

ABET on-site visit 2018: Arkansas State University (Jonesboro, AR)

ABET on-site visit 2019: Washington State University (Vancouver, WA)

ABET virtual visit 2020: Al-Ahliyya Amman University (Amman, Jordan)

ABET virtual visit 2021: Mahidol University (Nakhon Pathom, Thailand)

IEEE Joint Oversight (JOS) Committee: 2019 – 2022

IEEE NMISC (Nuclear Medical and Imaging Sciences Council) Awards committee: 2010, 2019

IEEE NMISC (Nuclear Medical and Imaging Sciences Council): 2001- 2003; 2012-2014; 2017-2019, 2022-2024

IEEE Medical Imaging Conference Awards Committee: 2003-2004, 2017

IEEE Nuclear and Plasma Sciences Society Nuclear Medical and Imaging Sciences Council, Chair of NMISC Communications (Web) Sub-Committee, 2004

IEEE Nuclear Sciences Symposium and Medical and Imaging Conference Site Selection Committee: 2001.

2020 Intermountain Engineering, Technology and Computing (IETC), Technical Committee member

NIH Study Section, 2018 (reviews grant proposals for NIH)

NIH Study Section, 2014 (reviews a P41 grant for NIH)

NIH Study Section, 2009 (reviews grant proposals for NIH)

NIH Study Section, 2000 (reviews grant proposals for NIH)

DOE Study Section, 2008 (reviews grant proposals for DOE)

Grant proposal review for the Netherlands Organisation for Scientific Research (NWO), 2010, 2011, 2012.

Deputy Chair of IEEE Medical Imaging Conference: 1999

Session Chair in the 1999 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

Co-Organizer of the 1993 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Snowbird, Utah.

Co-Organizer of the 2005 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Salt Lake City, Utah.

Co-Organizer of the 2017 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Xi'An, China.

Co-Organizer of the International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, Utah. 2010, 2012, 2014, 2018.

Served as the co-editor for the special issue of *Physics in Medicine and Biology* (Volume 39, Number 3, March 1994) which was dedicated to the 3D conference.

Served on Local Arrangement Committee of the Annual AAPM Meeting: 2001.

Served as a Scientific Program Committee Reviewer of the Annual Meeting of the Society of Nuclear Medicine: 1996-

Served in the Scientific Committee of the IEEE Medical Imaging Conference: 1993-

Organized abstract review for IEEE Medical Imaging Conference: 1999, 2000

Organized IEEE Medical Imaging Conference banquet program: 1999, 2000

Session Chair in the (1987) 30th Midwest Symposium on Circuits and Systems, Syracuse, New York.

Presentation award judge at *Frontiers in Nuclear Medicine Technology*, Mol, Belgium, 1999

Webmaster: IEEE Nuclear Medical and Imaging Sciences Council (1998, 1999), IEEE Medical Imaging Conference (1999).

2. Internal Administration Activities:

Utah Valley University, College of Engineering and Technologies, SAC Grant Award Committee (2020-present)

Utah Valley University, Computer Science Department, Chair of Hiring Committee (2020-2021)

Utah Valley University, College of Engineering and Technologies, Department of Computer Science, Engineering Initiative Scholarship Committee, (2021)

Weber State University, College of EAST Curriculum committee (2018 — 2019)

Weber State University, College of EAST Promotion and Tenure Committee (2015)

Weber State University, College of EAST Hearing Committee (2013 — 2019)

Weber State University, Department of Engineering Peer Review Committee (2015, 2018)

University of Utah Teaching Committee (2012 —2013)

University of Utah Policy Committee (2009 —2011)

University of Utah Technology Review Board (2005 — 2009)

University of Utah Credits and Admissions Committee (2004 — 2007)

University of Utah University Diversity Committee (2004 — 2006)

University of Utah School of Medicine Admissions Committee (1999 — 2004, 2012 —2013)

University of Utah Radiology PRT Committee (1999 — 2000)

University of Utah Radiation Safety Committee (RDRC) (1999 — 2000)

University of Utah College of Engineering Safety Committee (2002 — 2003)

BSEE Program Committee, Electrical and Computer Engineering Department (2002 — 2004)

Course Scheduling Officer of the Department of Radiology, University of Utah (1996 — 2003).

Organized 1993 MIRL Annual Research Symposium, Midway, Utah, and MIRL weekly Journal Club (1994).

3. Community activities:

Utah Chinese Golden Spike Society

Utah Chinese New Year Organizing Committee

4. Teaching and honors:

Supervising graduate students (Yi Weng, Chi-Hua Tung, Yu-Lung Hsieh, Roman Basko, Chuanyong Bai, Vladimir Panin, Girish Bal, Bing Feng, Randy Polson, Eric Sorensen, Bin Zhang, Rodney Earl, Kylie Covington, Do-Sik Hwang, Qiulin Tang, Rajesh Venkatraman, Yan Yan, Qiu Huang, Aaron Jorgensen, Richard Allred, Fengfeng Jing, Jacob Piatt, Thayne Miller, Geoff De Gennaro, Yanfei Mao, Zeljko Divkovic, Jordan Bohne, Bronson Stephens, Alex Briggs, Ross Frazier, Jimmy Phan, Nick Marietti, Man Dinh).

Supervising undergraduate students (Fred Trisjono, Jared Tanner, Antonelly Bermudez, Todd Ovard, John Chapman, Scott Karren, Ken Scott, Rodney Earl, Ben Holt, Grant Anderson, Keith Tracey, James Wright, Mark Erickson, Thayne Miller, Jacob Piatt, Jared Doot, Andy Stevens, Ross Frazier, Man Dinh)

Best instructor in the College of Engineering, University of Utah, Summer 1993, based on student evaluation score. Course taught: Bioengineering 552: Magnetic Resonance Imaging.

Top instructor in the College of Engineering, University of Utah, Spring 2002, based on student evaluation score. Course taught: Electrical Engineering 3510: Introduction to Feedback Systems.

Rated in the top 15% of the 30 faculty members teaching graduate courses in the College of Engineering, University of Utah, Winter 1995. Course taught: Bioengineering 651: Advanced Magnetic Resonance Imaging.

Rated in the top 15% of the faculty members teaching graduate courses in the College of Engineering, University of Utah, Winter 1996, Course taught: Bioengineering 652/EE 602: Three- Dimensional Reconstruction Techniques in Medical Imaging.

“Image reconstruction — a tutorial” was in the Elsevier Ltd. (<http://www.sciencedirect.com>) top 20 most downloaded articles during 2003.

Third place winner of the 2016 Low-Dose CT Grand Challenge, hosted by National Institute of Biomedical Imaging and Bioengineering, Accosiation of American Physisists of Medicine, Mayo Clinic, and CT Clinical Innovation Center, August 1, 2016

Second place winner of the 2021 Power of Passengers Challenge, hosted by the US Transportation Security Administration (TSA)
<https://powerofpassengers.techconnectventures.com/>

5. Ph.D. Students (University of Utah):

1. Chi-Hua Tung, [Nonuniform attenuation correction in cardiac SPECT using simultaneous transmission and emission converging tomography](#), 1994
2. Yu-Lung Hsieh, [Projection space image reconstruction using natural pixel bases for SPECT](#), 1996
3. Yi Weng, [Image reconstruction from cone-beam projections with attenuation correction](#), 1997
4. Chuanyong Bai, [A slab-by-slab blurring model for point response in single photon emission computed tomography \(image reconstruction\)](#), 2000

5. Vladimir Panin, [Attenuation correction in single photon emission computed tomography using a priori information](#), 2000
6. Bing Feng, [Modeling of the left ventricle \(LV\) by using mechanical models and image data](#), 2002
7. Girish Bal, [Multisegment slant-hole single photon emission computed tomography](#), 2003
8. Dosik Huang, [Iterative reconstruction for single photon emission computed tomography](#), 2006
9. Qiu Huang, [Analytical image reconstruction in single photon emission computed tomography](#), 2006
10. Bin Zhang, [SPECT iterative reconstruction with various types of measurements](#), 2007
11. Qiulin Tang, [Analytic reconstruction for single photon emission computed tomography](#), 2007
12. Yan Yan, [A postprocessing method for scatter compensation in single photon emission computed tomography](#), 2008
13. Yanfei Mao, [Segmented parallel and slant-hole stationary cardiac single photon emission computed tomography](#), 2015